Your browser doesn't support javascript.
loading
What déjà vu and the "dreamy state" tell us about episodic memory networks.
Gillinder, Lisa; Liegeois-Chauvel, Catherine; Chauvel, Patrick.
Afiliación
  • Gillinder L; Mater Research, University of Queensland, Brisbane, Australia; Cortical Systems Lab, University of Pittsburgh, Pittsburgh, USA. Electronic address: lisa.gillinder@mater.org.au.
  • Liegeois-Chauvel C; Cortical Systems Lab, University of Pittsburgh, Pittsburgh, USA.
  • Chauvel P; Mater Research, University of Queensland, Brisbane, Australia; Department of Neurology, University of Pittsburgh, Pittsburgh, USA.
Clin Neurophysiol ; 136: 173-181, 2022 04.
Article en En | MEDLINE | ID: mdl-35189480
Illusions of inappropriate familiarity with the current experience or hallucinatory recall of memories are reported in temporal lobe seizures. Pathophysiological hypotheses have been proposed, involving temporal limbic regions (Hughlings-Jackson), temporal neocortex ("interpretive cortex", Penfield), or both (Bancaud). Recent data acquired from presurgical investigations using intracerebral electrode recordings, demonstrate a critical role for the sub- and para-hippocampal cortices. From this, a novel hypothesis of cortico-limbic networks emerged: déjà-vu results from an abnormal synchronization between rhinal cortices and hippocampus, and reminiscences ("dreamy state") from activation of the associational function of the hippocampus in re-assembling elements of the past experience networks. "Experiential" phenomena are better scrutinized during direct cortical stimulation than during spontaneous occurrence, because it allows precise spatiotemporal correlations to be made between the illusion/hallucination and the electrical discharge features and localization. Therefore, we present a summary of the stimulation data published since Penfield's seminal studies, review the anatomical and physiological correlations of stimulation findings, and question their functional significance. We reappraise the distinct and coactive roles of the various regions involved in perception-memory processes including the hippocampus, rhinal cortices, temporal neocortex and constituent elements of the ventral stream. Additionally, we draw insights from what is known about the perception-cognition continuum underlying the construction of episodic memories. Finally, we compare the results from cortical stimulation in the epileptogenic zone with the use of stimulation for memory enhancement and explore what this reveals about the mechanisms of stimulation.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Epilepsia del Lóbulo Temporal / Memoria Episódica Límite: Humans Idioma: En Revista: Clin Neurophysiol Asunto de la revista: NEUROLOGIA / PSICOFISIOLOGIA Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Epilepsia del Lóbulo Temporal / Memoria Episódica Límite: Humans Idioma: En Revista: Clin Neurophysiol Asunto de la revista: NEUROLOGIA / PSICOFISIOLOGIA Año: 2022 Tipo del documento: Article
...