Your browser doesn't support javascript.
loading
Ocimum basilicum L. Methanol Extract Enhances Mitochondrial Efficiency and Decreases Adipokine Levels in Maturing Adipocytes Which Regulate Macrophage Systemic Inflammation.
Subash-Babu, Pandurangan; Mohammed Alowaidh, Hussah; Al-Harbi, Laila Naif; Shamlan, Ghalia; Aloud, Amal A; AlSedairy, Sahar Abdulaziz; Alshatwi, Ali Abdullah.
Afiliación
  • Subash-Babu P; Adipogenesis and Immunobiology Research Laboratory, Department of Food Sciences and Nutrition, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia.
  • Mohammed Alowaidh H; Adipogenesis and Immunobiology Research Laboratory, Department of Food Sciences and Nutrition, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia.
  • Al-Harbi LN; Adipogenesis and Immunobiology Research Laboratory, Department of Food Sciences and Nutrition, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia.
  • Shamlan G; Adipogenesis and Immunobiology Research Laboratory, Department of Food Sciences and Nutrition, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia.
  • Aloud AA; Adipogenesis and Immunobiology Research Laboratory, Department of Food Sciences and Nutrition, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia.
  • AlSedairy SA; Adipogenesis and Immunobiology Research Laboratory, Department of Food Sciences and Nutrition, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia.
  • Alshatwi AA; Adipogenesis and Immunobiology Research Laboratory, Department of Food Sciences and Nutrition, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia.
Molecules ; 27(4)2022 Feb 18.
Article en En | MEDLINE | ID: mdl-35209178
Excessive storage of lipids in visceral or ectopic sites stimulates adipokine production, which attracts macrophages. This process determines the pro- and anti-inflammatory response regulation in adipose tissue during obesity-associated systemic inflammation. The present study aimed to identify the composition of Ocimum basilicum L. (basil) seed extract and to determine its bio-efficacy on adipocyte thermogenesis or fatty acid oxidation and inhibition of lipid accumulation and adipokine secretion. Ocimum basilicum L. seed methanol extract (BSME) was utilized to analyze the cytotoxicity vs. control; lipid accumulation assay (oil red O and Nile red staining), adipogenesis and mitochondrial-thermogenesis-related gene expression vs. vehicle control were analyzed by PCR assay. In addition, vehicle control and BSME-treated adipocytes condition media were collected and treated with lipopolysaccharide (LPS)-induced macrophage to identify the macrophage polarization. The results shown that the active components present in BSME did not produce significant cytotoxicity in preadipocytes or macrophages in the MTT assay. Furthermore, oil red O and Nile red staining assay confirmed that 80 and 160 µg/dL concentrations of BSME effectively arrested lipid accumulation and inhibited adipocyte maturation, when compared with tea polyphenols. Gene expression level of adipocyte hyperplasia (CEBPα, PPARγ) and lipogenesis (LPL)-related genes have been significantly (p ≤ 0.05) downregulated, and mitochondrial-thermogenesis-associated genes (PPARγc1α, UCP-1, prdm16) have been significantly (p ≤ 0.001) upregulated. The BSME-treated, maturing, adipocyte-secreted proteins were detected with a decreased protein level of leptin, TNF-α, IL-6 and STAT-6, which are associated with insulin resistance and macrophage recruitment. The "LPS-stimulated macrophage" treated with "BSME-treated adipocytes condition media", shown with significant (p ≤ 0.001) decrease in metabolic-inflammation-related proteins-such as PGE-2, MCP-1, TNF-α and NF-κB-were majorly associated with the development of foam cell formation and progression of atherosclerotic lesion. The present findings concluded that the availability of active principles in basil seed effectively inhibit adipocyte hypertrophy, macrophage polarization, and the inflammation associated with insulin resistance and thrombosis development. Ocimum basilicum L. seed may be useful as a dietary supplement to enhance fatty acid oxidation, which aids in overcoming metabolic complications.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Extractos Vegetales / Adipocitos / Ocimum basilicum / Adipoquinas / Macrófagos / Mitocondrias Tipo de estudio: Prognostic_studies Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Arabia Saudita

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Extractos Vegetales / Adipocitos / Ocimum basilicum / Adipoquinas / Macrófagos / Mitocondrias Tipo de estudio: Prognostic_studies Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Arabia Saudita
...