High-speed graphene/InGaN heterojunction photodetectors for potential application in visible light communication.
Opt Express
; 30(3): 3903-3912, 2022 Jan 31.
Article
en En
| MEDLINE
| ID: mdl-35209639
Due to the wavelength-selective absorption characteristic of indium gallium nitride (InGaN) ternary alloy, the InGaN-based photodetectors (PDs) show great potential as high signal-to-noise ratio (SNR) receivers in the visible light communication (VLC) system. However, the application of InGaN-based PDs with simple structure in the VLC system is limited by slow speed. Integration of graphene (Gr) with InGaN is an effective strategy for overcoming the limitation. Herein, we report on a high responsivity and fast response PDs based on Gr/InGaN heterojunctions. It finds that the three-layer Gr (T-Gr) can effectively improve the InGaN-based PDs photoelectric properties. The T-Gr/InGaN PDs show a high responsivity of 1.39 A/W@-3 V and a short rise/fall time of 60/200 µs, which are attributed to the combination of the high-quality InGaN epitaxial films and finite density of states of three-layer graphene. The fast response with high responsivity endows the T-Gr/InGaN PDs with great potential for selective detection of the VLC system.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Opt Express
Asunto de la revista:
OFTALMOLOGIA
Año:
2022
Tipo del documento:
Article