Your browser doesn't support javascript.
loading
Moiré bands in twisted trilayer black phosphorene: effects of pressure and electric field.
Wang, Erqing; Zou, Xiaolong.
Afiliación
  • Wang E; Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China. xlzou@sz.tsinghua.edu.cn.
  • Zou X; Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China. xlzou@sz.tsinghua.edu.cn.
Nanoscale ; 14(10): 3758-3767, 2022 Mar 10.
Article en En | MEDLINE | ID: mdl-35234227
ABSTRACT
Twist-induced moiré bands and accompanied correlated phenomena have been extensively investigated in twisted hexagonal lattices with weak interlayer coupling. However, the formation of moiré bands in strongly coupled layered materials and their controlled tuning remain largely unexplored. Here, we systematically study the moiré bands in twisted trilayer black phosphorene (TTbP) and the influences of pressure and electric field on them. Moiré states can form in various TTbPs even when the twist angle is larger than 16° similar to that of twisted bilayer bP. However, different TTbPs show different localization patterns depending on the twisting layer, leading to distinct dipolar behaviors. While these moiré states become quasi-one-dimensional (1D) as the twist angle decreases, external pressure causes the crossover of moiré states from quasi-1D to 0D with a dramatic change in localization areas and greatly reduced bandwidth. Interestingly, compared to twisted bilayer and pristine bP, TTbPs show a much larger electric-field induced Stark effect, controllable by either the twist angle or twist layer. Our work thus demonstrates TTbP as an attractive platform to explore moiré-controlled electronic and optical properties, as well as tunable optoelectronic applications.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nanoscale Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nanoscale Año: 2022 Tipo del documento: Article País de afiliación: China
...