Your browser doesn't support javascript.
loading
Hydroxylamine mediated Fenton-like interfacial reaction dynamics on sea urchin-like catalyst derived from spent LiFePO4 battery.
Zou, Wensong; Li, Jing; Wang, Ranhao; Ma, Jingyi; Chen, Zhijie; Duan, Lele; Mi, Hongwei; Chen, Hong.
Afiliación
  • Zou W; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Eng
  • Li J; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Eng
  • Wang R; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Eng
  • Ma J; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Eng
  • Chen Z; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Eng
  • Duan L; Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, PR China.
  • Mi H; School of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China. Electronic address: milia807@szu.edu.cn.
  • Chen H; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Eng
J Hazard Mater ; 431: 128590, 2022 Jun 05.
Article en En | MEDLINE | ID: mdl-35247735
ABSTRACT
Herein, we converted spent LiFePO4 battery to the sea urchin-like material (SULM) with a highly efficient and environment-friendly method, which can contribute to building a zero-waste city. With SULM as a Fenton-like catalyst, a highly-efficient degradation process was realized for organic pollutants with interface and solution synergistic effect. In our SULM+NH2OH+H2O2 Fenton-like system, NH2OH can effectively promote the interface iron (Fe(Ⅲ)/Fe(Ⅱ)) and solution iron (Fe(Ⅲ)/Fe(Ⅱ)) redox cycle, thus promoting the generation of reactive oxygen species (ROS). However, the ROS generation process and organic pollutants degradation pathway with the presence of NH2OH remains a puzzle. Here the detailed ROS generation mechanism and pollutants degradation pathway have been illustrated carefully based on experimental exploration and characterization. Therein, hydroxyl radicals (·OH) and singlet oxygen (1O2) are the main ROS for oxidizing and degrading organic pollutants. Notably, 1O2 can be converted from superoxide radicals (·O2) in SULM+NH2OH+H2O2 system. This study not only demonstrates the strategy of "trash-to-treasure" and "waste-to-control-waste" to simultaneously reduce the hazardous release from industrial solid waste and organic wastewater, it also provides new mechanistic insights for NH2OH mediated Fenton-like redox system.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2022 Tipo del documento: Article
...