Your browser doesn't support javascript.
loading
Structure of the moiré exciton captured by imaging its electron and hole.
Karni, Ouri; Barré, Elyse; Pareek, Vivek; Georgaras, Johnathan D; Man, Michael K L; Sahoo, Chakradhar; Bacon, David R; Zhu, Xing; Ribeiro, Henrique B; O'Beirne, Aidan L; Hu, Jenny; Al-Mahboob, Abdullah; Abdelrasoul, Mohamed M M; Chan, Nicholas S; Karmakar, Arka; Winchester, Andrew J; Kim, Bumho; Watanabe, Kenji; Taniguchi, Takashi; Barmak, Katayun; Madéo, Julien; da Jornada, Felipe H; Heinz, Tony F; Dani, Keshav M.
Afiliación
  • Karni O; Department of Applied Physics, Stanford University, Stanford, CA, USA.
  • Barré E; SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Pareek V; SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Georgaras JD; Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
  • Man MKL; Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan.
  • Sahoo C; Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
  • Bacon DR; Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan.
  • Zhu X; Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan.
  • Ribeiro HB; Tata Institute of Fundamental Research, Hyderabad, Gopanpally, Serlingampalli, Telangana, India.
  • O'Beirne AL; Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan.
  • Hu J; Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan.
  • Al-Mahboob A; SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Abdelrasoul MMM; SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Chan NS; Department of Physics, Stanford University, Stanford, CA, USA.
  • Karmakar A; Department of Applied Physics, Stanford University, Stanford, CA, USA.
  • Winchester AJ; Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan.
  • Kim B; Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan.
  • Watanabe K; Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan.
  • Taniguchi T; Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan.
  • Barmak K; Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan.
  • Madéo J; Department of Mechanical Engineering, Columbia University, New York, NY, USA.
  • da Jornada FH; Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan.
  • Heinz TF; International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan.
  • Dani KM; Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA.
Nature ; 603(7900): 247-252, 2022 03.
Article en En | MEDLINE | ID: mdl-35264760
ABSTRACT
Interlayer excitons (ILXs) - electron-hole pairs bound across two atomically thin layered semiconductors - have emerged as attractive platforms to study exciton condensation1-4, single-photon emission and other quantum information applications5-7. Yet, despite extensive optical spectroscopic investigations8-12, critical information about their size, valley configuration and the influence of the moiré potential remains unknown. Here, in a WSe2/MoS2 heterostructure, we captured images of the time-resolved and momentum-resolved distribution of both of the particles that bind to form the ILX the electron and the hole. We thereby obtain a direct measurement of both the ILX diameter of around 5.2 nm, comparable with the moiré-unit-cell length of 6.1 nm, and the localization of its centre of mass. Surprisingly, this large ILX is found pinned to a region of only 1.8 nm diameter within the moiré cell, smaller than the size of the exciton itself. This high degree of localization of the ILX is backed by Bethe-Salpeter equation calculations and demonstrates that the ILX can be localized within small moiré unit cells. Unlike large moiré cells, these are uniform over large regions, allowing the formation of extended arrays of localized excitations for quantum technology.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nature Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nature Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos
...