Your browser doesn't support javascript.
loading
Aspect Ratio Dependence of Heat Transfer in a Cylindrical Rayleigh-Bénard Cell.
Ahlers, Guenter; Bodenschatz, Eberhard; Hartmann, Robert; He, Xiaozhou; Lohse, Detlef; Reiter, Philipp; Stevens, Richard J A M; Verzicco, Roberto; Wedi, Marcel; Weiss, Stephan; Zhang, Xuan; Zwirner, Lukas; Shishkina, Olga.
Afiliación
  • Ahlers G; Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany.
  • Bodenschatz E; Department of Physics, University of California, Santa Barbara, California 93106, USA.
  • Hartmann R; Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany.
  • He X; Max Planck-University of Twente Center for Complex Fluid Dynamics, 7500 AE Enschede, Netherlands.
  • Lohse D; Institute for the Dynamics of Complex Systems, Georg-August-University Göttingen, 37073 Göttingen, Germany.
  • Reiter P; Laboratory of Atomic and Solid-State Physics and Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA.
  • Stevens RJAM; Physics of Fluids Group, J. M. Burgers Center for Fluid Dynamics and MESA+ Institute, University of Twente, 7500 AE Enschede, Netherlands.
  • Verzicco R; Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany.
  • Wedi M; School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, 518055 China.
  • Weiss S; Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany.
  • Zhang X; Physics of Fluids Group, J. M. Burgers Center for Fluid Dynamics and MESA+ Institute, University of Twente, 7500 AE Enschede, Netherlands.
  • Zwirner L; Max Planck-University of Twente Center for Complex Fluid Dynamics, 7500 AE Enschede, Netherlands.
  • Shishkina O; Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany.
Phys Rev Lett ; 128(8): 084501, 2022 Feb 25.
Article en En | MEDLINE | ID: mdl-35275677
ABSTRACT
While the heat transfer and the flow dynamics in a cylindrical Rayleigh-Bénard (RB) cell are rather independent of the aspect ratio Γ (diameter/height) for large Γ, a small-Γ cell considerably stabilizes the flow and thus affects the heat transfer. Here, we first theoretically and numerically show that the critical Rayleigh number for the onset of convection at given Γ follows Ra_{c,Γ}∼Ra_{c,∞}(1+CΓ^{-2})^{2}, with C≲1.49 for Oberbeck-Boussinesq (OB) conditions. We then show that, in a broad aspect ratio range (1/32)≤Γ≤32, the rescaling Ra→Ra_{ℓ}≡Ra[Γ^{2}/(C+Γ^{2})]^{3/2} collapses various OB numerical and almost-OB experimental heat transport data Nu(Ra,Γ). Our findings predict the Γ dependence of the onset of the ultimate regime Ra_{u,Γ}∼[Γ^{2}/(C+Γ^{2})]^{-3/2} in the OB case. This prediction is consistent with almost-OB experimental results (which only exist for Γ=1, 1/2, and 1/3) for the transition in OB RB convection and explains why, in small-Γ cells, much larger Ra (namely, by a factor Γ^{-3}) must be achieved to observe the ultimate regime.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Phys Rev Lett Año: 2022 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Phys Rev Lett Año: 2022 Tipo del documento: Article País de afiliación: Alemania
...