Your browser doesn't support javascript.
loading
DeLA-Drug: A Deep Learning Algorithm for Automated Design of Druglike Analogues.
Creanza, Teresa Maria; Lamanna, Giuseppe; Delre, Pietro; Contino, Marialessandra; Corriero, Nicola; Saviano, Michele; Mangiatordi, Giuseppe Felice; Ancona, Nicola.
Afiliación
  • Creanza TM; CNR─Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Via Amendola 122/o, 70126 Bari, Italy.
  • Lamanna G; Chemistry Department, University of Bari "Aldo Moro", via E. Orabona, 4, I-70125 Bari, Italy.
  • Delre P; CNR─Institute of Crystallography, Via Amendola 122/o, 70126 Bari, Italy.
  • Contino M; Chemistry Department, University of Bari "Aldo Moro", via E. Orabona, 4, I-70125 Bari, Italy.
  • Corriero N; CNR─Institute of Crystallography, Via Amendola 122/o, 70126 Bari, Italy.
  • Saviano M; Department of Pharmacy─Pharmaceutical Sciences, University of Bari "Aldo Moro", via E. Orabona, 4, I-70125 Bari, Italy.
  • Mangiatordi GF; CNR─Institute of Crystallography, Via Amendola 122/o, 70126 Bari, Italy.
  • Ancona N; CNR─Institute of Crystallography, Via Amendola 122/o, 70126 Bari, Italy.
J Chem Inf Model ; 62(6): 1411-1424, 2022 03 28.
Article en En | MEDLINE | ID: mdl-35294184
In this paper, we present a deep learning algorithm for automated design of druglike analogues (DeLA-Drug), a recurrent neural network (RNN) model composed of two long short-term memory (LSTM) layers and conceived for data-driven generation of similar-to-bioactive compounds. DeLA-Drug captures the syntax of SMILES strings of more than 1 million compounds belonging to the ChEMBL28 database and, by employing a new strategy called sampling with substitutions (SWS), generates molecules starting from a single user-defined query compound. Remarkably, the algorithm preserves druglikeness and synthetic accessibility of the known bioactive compounds present in the ChEMBL28 repository. The absence of any time-demanding fine-tuning procedure enables DeLA-Drug to perform a fast generation of focused libraries for further high-throughput screening and makes it a suitable tool for performing de novo design even in low-data regimes. To provide a concrete idea of its applicability, DeLA-Drug was applied to the cannabinoid receptor subtype 2 (CB2R), a known target involved in different pathological conditions such as cancer and neurodegeneration. DeLA-Drug, available as a free web platform (http://www.ba.ic.cnr.it/softwareic/deladrugportal/), can help medicinal chemists interested in generating analogues of compounds already available in their laboratories and, for this reason, good candidates for an easy and low-cost synthesis.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 1_ASSA2030 Problema de salud: 1_medicamentos_vacinas_tecnologias Asunto principal: Aprendizaje Profundo Tipo de estudio: Prognostic_studies Idioma: En Revista: J Chem Inf Model Asunto de la revista: INFORMATICA MEDICA / QUIMICA Año: 2022 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 1_ASSA2030 Problema de salud: 1_medicamentos_vacinas_tecnologias Asunto principal: Aprendizaje Profundo Tipo de estudio: Prognostic_studies Idioma: En Revista: J Chem Inf Model Asunto de la revista: INFORMATICA MEDICA / QUIMICA Año: 2022 Tipo del documento: Article País de afiliación: Italia
...