Your browser doesn't support javascript.
loading
Generation of dynamic vortices in a microfluidic system incorporating stenosis barrier by tube oscillation.
Thurgood, Peter; Chheang, Chanly; Needham, Scott; Pirogova, Elena; Peter, Karlheinz; Baratchi, Sara; Khoshmanesh, Khashayar.
Afiliación
  • Thurgood P; School of Engineering, RMIT University, Melbourne, Victoria, Australia. peter.thurgood@rmit.edu.au.
  • Chheang C; School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia. sara.baratchi@rmit.edu.au.
  • Needham S; Leading Technology Group, Bayswater, Victoria, Australia.
  • Pirogova E; School of Engineering, RMIT University, Melbourne, Victoria, Australia. peter.thurgood@rmit.edu.au.
  • Peter K; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
  • Baratchi S; Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, Australia.
  • Khoshmanesh K; School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia. sara.baratchi@rmit.edu.au.
Lab Chip ; 22(10): 1917-1928, 2022 05 17.
Article en En | MEDLINE | ID: mdl-35420623
ABSTRACT
Microfluidic systems incorporating sudden expansions are widely used for generation of vortex flow patterns. However, the formation of vortices requires high flow rates to induce inertial effects. Here, we introduce a new method for generating dynamic vortices in microfluidics at low static flow rates. Human blood is driven through a microfluidic channel incorporating a semi-circular stenosis barrier. The inlet tube of the channel is axially oscillated using a computer-controlled audio-speaker. The tube oscillation induces high transient flow rates in the channel, which generates dynamic vortices across the stenosis barrier. The size of the vortices can be modulated by varying the frequency and amplitude of tube oscillation. Various vortex flow patterns can be generated by varying the flow rate. The formation and size of the vortices can be predicted using the Reynolds number of the oscillating tube. We demonstrate the potential application of the system for investigating the adhesion and phagocytosis of circulating immune cells under pathologically high shear rates induced at the stenosis. This approach facilitates the development of versatile and controllable inertial microfluidic systems for performing various cellular assays while operating at low static flow rates and low sample volumes.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Microfluídica Límite: Humans Idioma: En Revista: Lab Chip Asunto de la revista: BIOTECNOLOGIA / QUIMICA Año: 2022 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Microfluídica Límite: Humans Idioma: En Revista: Lab Chip Asunto de la revista: BIOTECNOLOGIA / QUIMICA Año: 2022 Tipo del documento: Article País de afiliación: Australia
...