Your browser doesn't support javascript.
loading
Memristive LIF Spiking Neuron Model and Its Application in Morse Code.
Fang, Xiaoyan; Liu, Derong; Duan, Shukai; Wang, Lidan.
Afiliación
  • Fang X; College of Artificial Intelligence, Southwest University, Chongqing, China.
  • Liu D; Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, United States.
  • Duan S; College of Artificial Intelligence, Southwest University, Chongqing, China.
  • Wang L; College of Artificial Intelligence, Southwest University, Chongqing, China.
Front Neurosci ; 16: 853010, 2022.
Article en En | MEDLINE | ID: mdl-35464318
The leaky integrate-and-fire (LIF) spiking model can successively mimic the firing patterns and information propagation of a biological neuron. It has been applied in neural networks, cognitive computing, and brain-inspired computing. Due to the resistance variability and the natural storage capacity of the memristor, the LIF spiking model with a memristor (MLIF) is presented in this article to simulate the function and working mode of neurons in biological systems. First, the comparison between the MLIF spiking model and the LIF spiking model is conducted. Second, it is experimentally shown that a single memristor could mimic the function of the integration and filtering of the dendrite and emulate the function of the integration and firing of the soma. Finally, the feasibility of the proposed MLIF spiking model is verified by the generation and recognition of Morse code. The experimental results indicate that the presented MLIF model efficiently performs good biological frequency adaptation, high firing frequency, and rich spiking patterns. A memristor can be used as the dendrite and the soma, and the MLIF spiking model can emulate the axon. The constructed single neuron can efficiently complete the generation and propagation of firing patterns.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Front Neurosci Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Front Neurosci Año: 2022 Tipo del documento: Article País de afiliación: China
...