Your browser doesn't support javascript.
loading
NAD(P)H fluorescence lifetime imaging of live intestinal nematodes reveals metabolic crosstalk between parasite and host.
Liublin, Wjatscheslaw; Rausch, Sebastian; Leben, Ruth; Lindquist, Randall L; Fiedler, Alexander; Liebeskind, Juliane; Beckers, Ingeborg E; Hauser, Anja E; Hartmann, Susanne; Niesner, Raluca A.
Afiliación
  • Liublin W; Biophysical Analytics, Deutsches Rheuma-Forschungszentrum, Berlin, A Leibniz Institute, Berlin, Germany.
  • Rausch S; Dynamic and Functional In Vivo Imaging, Department of Veterinary Medicine, Institute for Veterinary Physiology, Freie Universität, Berlin, Germany.
  • Leben R; Department of Veterinary Medicine, Institute of Immunology, Freie Universität, Berlin, Germany.
  • Lindquist RL; Biophysical Analytics, Deutsches Rheuma-Forschungszentrum, Berlin, A Leibniz Institute, Berlin, Germany.
  • Fiedler A; Dynamic and Functional In Vivo Imaging, Department of Veterinary Medicine, Institute for Veterinary Physiology, Freie Universität, Berlin, Germany.
  • Liebeskind J; Department of Nuclear Medicine, Charité - Universitätsmedizin, Berlin, Corporate Member of Freie and Humboldt University, Berlin, Germany.
  • Beckers IE; Laboratory for Immune Dynamics, Deutsches Rheuma-Forschungszentrum, Berlin, A Leibniz Institute, Berlin, Germany.
  • Hauser AE; Biophysical Analytics, Deutsches Rheuma-Forschungszentrum, Berlin, A Leibniz Institute, Berlin, Germany.
  • Hartmann S; Dynamic and Functional In Vivo Imaging, Department of Veterinary Medicine, Institute for Veterinary Physiology, Freie Universität, Berlin, Germany.
  • Niesner RA; Laboratory for Immune Dynamics, Deutsches Rheuma-Forschungszentrum, Berlin, A Leibniz Institute, Berlin, Germany.
Sci Rep ; 12(1): 7264, 2022 05 04.
Article en En | MEDLINE | ID: mdl-35508502
ABSTRACT
Infections with intestinal nematodes have an equivocal impact they represent a burden for human health and animal husbandry, but, at the same time, may ameliorate auto-immune diseases due to the immunomodulatory effect of the parasites. Thus, it is key to understand how intestinal nematodes arrive and persist in their luminal niche and interact with the host over long periods of time. One basic mechanism governing parasite and host cellular and tissue functions, metabolism, has largely been neglected in the study of intestinal nematode infections. Here we use NADH (nicotinamide adenine dinucleotide) and NADPH (nicotinamide adenine dinucleotide phosphate) fluorescence lifetime imaging of explanted murine duodenum infected with the natural nematode Heligmosomoides polygyrus and define the link between general metabolic activity and possible metabolic pathways in parasite and host tissue, during acute infection. In both healthy and infected host intestine, energy is effectively produced, mainly via metabolic pathways resembling oxidative phosphorylation/aerobic glycolysis features. In contrast, the nematodes shift their energy production from balanced fast anaerobic glycolysis-like and effective oxidative phosphorylation-like metabolic pathways, towards mainly anaerobic glycolysis-like pathways, back to oxidative phosphorylation/aerobic glycolysis-like pathways during their different life cycle phases in the submucosa versus the intestinal lumen. Additionally, we found an increased NADPH oxidase (NOX) enzymes-dependent oxidative burst in infected intestinal host tissue as compared to healthy tissue, which was mirrored by a similar defense reaction in the parasites. We expect that, the here presented application of NAD(P)H-FLIM in live tissues constitutes a unique tool to study possible shifts between metabolic pathways in host-parasite crosstalk, in various parasitic intestinal infections.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Parásitos / Nematospiroides dubius Límite: Animals Idioma: En Revista: Sci Rep Año: 2022 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Parásitos / Nematospiroides dubius Límite: Animals Idioma: En Revista: Sci Rep Año: 2022 Tipo del documento: Article País de afiliación: Alemania
...