Universal machine learning framework for defect predictions in zinc blende semiconductors.
Patterns (N Y)
; 3(3): 100450, 2022 Mar 11.
Article
en En
| MEDLINE
| ID: mdl-35510195
We develop a framework powered by machine learning (ML) and high-throughput density functional theory (DFT) computations for the prediction and screening of functional impurities in groups IV, III-V, and II-VI zinc blende semiconductors. Elements spanning the length and breadth of the periodic table are considered as impurity atoms at the cation, anion, or interstitial sites in supercells of 34 candidate semiconductors, leading to a chemical space of approximately 12,000 points, 10% of which are used to generate a DFT dataset of charge dependent defect formation energies. Descriptors based on tabulated elemental properties, defect coordination environment, and relevant semiconductor properties are used to train ML regression models for the DFT computed neutral state formation energies and charge transition levels of impurities. Optimized kernel ridge, Gaussian process, random forest, and neural network regression models are applied to screen impurities with lower formation energy than dominant native defects in all compounds.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Tipo de estudio:
Prognostic_studies
/
Risk_factors_studies
Idioma:
En
Revista:
Patterns (N Y)
Año:
2022
Tipo del documento:
Article
País de afiliación:
Estados Unidos