Your browser doesn't support javascript.
loading
Universal machine learning framework for defect predictions in zinc blende semiconductors.
Mannodi-Kanakkithodi, Arun; Xiang, Xiaofeng; Jacoby, Laura; Biegaj, Robert; Dunham, Scott T; Gamelin, Daniel R; Chan, Maria K Y.
Afiliación
  • Mannodi-Kanakkithodi A; Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA.
  • Xiang X; School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA.
  • Jacoby L; Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195, USA.
  • Biegaj R; Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
  • Dunham ST; Materials Science & Engineering, University of Washington, Seattle, WA 98195, USA.
  • Gamelin DR; Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA.
  • Chan MKY; Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
Patterns (N Y) ; 3(3): 100450, 2022 Mar 11.
Article en En | MEDLINE | ID: mdl-35510195
We develop a framework powered by machine learning (ML) and high-throughput density functional theory (DFT) computations for the prediction and screening of functional impurities in groups IV, III-V, and II-VI zinc blende semiconductors. Elements spanning the length and breadth of the periodic table are considered as impurity atoms at the cation, anion, or interstitial sites in supercells of 34 candidate semiconductors, leading to a chemical space of approximately 12,000 points, 10% of which are used to generate a DFT dataset of charge dependent defect formation energies. Descriptors based on tabulated elemental properties, defect coordination environment, and relevant semiconductor properties are used to train ML regression models for the DFT computed neutral state formation energies and charge transition levels of impurities. Optimized kernel ridge, Gaussian process, random forest, and neural network regression models are applied to screen impurities with lower formation energy than dominant native defects in all compounds.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Patterns (N Y) Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Patterns (N Y) Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos
...