Double-Modification Oriented Design of a Deep-UV Birefringent Crystal Functionalized by [B12 O16 F4 (OH)4 ] Clusters.
Angew Chem Int Ed Engl
; 61(30): e202203984, 2022 Jul 25.
Article
en En
| MEDLINE
| ID: mdl-35538644
Polarization modulation of deep-UV light is of significance to current technologies, and to this end, the birefringent crystal has emerged as an invaluable material as it allows for effective light modulation. Herein, a double-modification strategy driven by F and OH anions that makes double effects towards the critical property enhancement of deep-UV birefringent crystals is proposed. This leads to a new hydroxyborate (NH4 )4 [B12 O16 F4 (OH)4 ] with giant cluster as a deep-UV birefringent crystal with large birefringence (Δnexp. =0.12@546.1â
nm). This birefringence is a record among inorganic hydroxyborates with experimentally measured birefringence. Structural analysis shows that the near-plane arrangement of [B12 O16 F4 (OH)4 ] cluster is responsible for the large optical anisotropy. Theoretical calculations indicate that its π-conjugated [BO3 ] and [BO2 OH] units are the main source of this large optical anisotropy.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Angew Chem Int Ed Engl
Año:
2022
Tipo del documento:
Article
País de afiliación:
China