Your browser doesn't support javascript.
loading
Nonconvex Nonlocal Tucker Decomposition for 3D Medical Image Super-Resolution.
Jia, Huidi; Chen, Xi'ai; Han, Zhi; Liu, Baichen; Wen, Tianhui; Tang, Yandong.
Afiliación
  • Jia H; State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China.
  • Chen X; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China.
  • Han Z; University of Chinese Academy of Sciences, Beijing, China.
  • Liu B; State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China.
  • Wen T; State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China.
  • Tang Y; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China.
Front Neuroinform ; 16: 880301, 2022.
Article en En | MEDLINE | ID: mdl-35547860
Limited by hardware conditions, imaging devices, transmission efficiency, and other factors, high-resolution (HR) images cannot be obtained directly in clinical settings. It is expected to obtain HR images from low-resolution (LR) images for more detailed information. In this article, we propose a novel super-resolution model for single 3D medical images. In our model, nonlocal low-rank tensor Tucker decomposition is applied to exploit the nonlocal self-similarity prior knowledge of data. Different from the existing methods that use a convex optimization for tensor Tucker decomposition, we use a tensor folded-concave penalty to approximate a nonlocal low-rank tensor. Weighted 3D total variation (TV) is used to maintain the local smoothness across different dimensions. Extensive experiments show that our method outperforms some state-of-the-art (SOTA) methods on different kinds of medical images, including MRI data of the brain and prostate and CT data of the abdominal and dental.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Front Neuroinform Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Front Neuroinform Año: 2022 Tipo del documento: Article País de afiliación: China
...