Your browser doesn't support javascript.
loading
Innovations in Genomics and Big Data Analytics for Personalized Medicine and Health Care: A Review.
Hassan, Mubashir; Awan, Faryal Mehwish; Naz, Anam; deAndrés-Galiana, Enrique J; Alvarez, Oscar; Cernea, Ana; Fernández-Brillet, Lucas; Fernández-Martínez, Juan Luis; Kloczkowski, Andrzej.
Afiliación
  • Hassan M; Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore 54590, Pakistan.
  • Awan FM; The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA.
  • Naz A; Department of Medical Lab Technology, The University of Haripur, Haripur 22620, Pakistan.
  • deAndrés-Galiana EJ; Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore 54590, Pakistan.
  • Alvarez O; Group of Inverse Problems, Optimization and Machine Learning, University of Oviedo, 33003 Oviedo, Spain.
  • Cernea A; DeepBioInsights, 38311 La Florida, Spain.
  • Fernández-Brillet L; DeepBioInsights, 38311 La Florida, Spain.
  • Fernández-Martínez JL; DeepBioInsights, 38311 La Florida, Spain.
  • Kloczkowski A; Group of Inverse Problems, Optimization and Machine Learning, University of Oviedo, 33003 Oviedo, Spain.
Int J Mol Sci ; 23(9)2022 Apr 22.
Article en En | MEDLINE | ID: mdl-35563034
Big data in health care is a fast-growing field and a new paradigm that is transforming case-based studies to large-scale, data-driven research. As big data is dependent on the advancement of new data standards, technology, and relevant research, the future development of big data applications holds foreseeable promise in the modern day health care revolution. Enormously large, rapidly growing collections of biomedical omics-data (genomics, proteomics, transcriptomics, metabolomics, glycomics, etc.) and clinical data create major challenges and opportunities for their analysis and interpretation and open new computational gateways to address these issues. The design of new robust algorithms that are most suitable to properly analyze this big data by taking into account individual variability in genes has enabled the creation of precision (personalized) medicine. We reviewed and highlighted the significance of big data analytics for personalized medicine and health care by focusing mostly on machine learning perspectives on personalized medicine, genomic data models with respect to personalized medicine, the application of data mining algorithms for personalized medicine as well as the challenges we are facing right now in big data analytics.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Medicina de Precisión / Ciencia de los Datos Tipo de estudio: Guideline / Prognostic_studies Idioma: En Revista: Int J Mol Sci Año: 2022 Tipo del documento: Article País de afiliación: Pakistán

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Medicina de Precisión / Ciencia de los Datos Tipo de estudio: Guideline / Prognostic_studies Idioma: En Revista: Int J Mol Sci Año: 2022 Tipo del documento: Article País de afiliación: Pakistán
...