Current-induced hole spin polarization in a quantum dot via a chiral quasi bound state.
Nanoscale Horiz
; 7(7): 752-758, 2022 Jun 27.
Article
en En
| MEDLINE
| ID: mdl-35593642
We put forward a mechanism for the current-induced spin polarization in semiconductor heterostructures, which is based on the complex structure of the valence band. It takes place for a light hole in a quantum dot side-coupled to a quantum wire with heavy holes. In stark contrast with the traditional mechanisms based on the linear in momentum spin-orbit coupling, an exponentially small bias applied to this structure is enough to create the 100% spin polarization in the quantum dot. Microscopically, this effect is related to the formation of the chiral quasi bound states and the spin-dependent tunneling of holes from the quantum wire to the quantum dot. This new concept is equally valid for the GaAs-, Si- and Ge-based nanostructures.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Nanoscale Horiz
Año:
2022
Tipo del documento:
Article
País de afiliación:
Rusia