Your browser doesn't support javascript.
loading
Self-generated gradients steer collective migration on viscoelastic collagen networks.
Clark, Andrew G; Maitra, Ananyo; Jacques, Cécile; Bergert, Martin; Pérez-González, Carlos; Simon, Anthony; Lederer, Luc; Diz-Muñoz, Alba; Trepat, Xavier; Voituriez, Raphaël; Vignjevic, Danijela Matic.
Afiliación
  • Clark AG; Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS, Paris, France. andrew.clark@srcsb.uni-stuttgart.de.
  • Maitra A; Institute of Cell Biology and Immunology, Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany. andrew.clark@srcsb.uni-stuttgart.de.
  • Jacques C; Center for Personalized Medicine, University of Tübingen, Tübingen, Germany. andrew.clark@srcsb.uni-stuttgart.de.
  • Bergert M; Laboratoire Jean Perrin, Sorbonne Université and CNRS, Paris, France. nyomaitra07@gmail.com.
  • Pérez-González C; Laboratoire de Physique Théorique et Modélisation, CNRS, CY Cergy Paris Université, Cergy-Pontoise Cedex, France. nyomaitra07@gmail.com.
  • Simon A; Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS, Paris, France.
  • Lederer L; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
  • Diz-Muñoz A; Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS, Paris, France.
  • Trepat X; Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS, Paris, France.
  • Voituriez R; Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS, Paris, France.
  • Vignjevic DM; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
Nat Mater ; 21(10): 1200-1210, 2022 10.
Article en En | MEDLINE | ID: mdl-35637338
ABSTRACT
Growing evidence suggests that the physical properties of the cellular microenvironment influence cell migration. However, it is not currently understood how active physical remodelling by cells affects migration dynamics. Here we report that cell clusters seeded on deformable collagen-I networks display persistent collective migration despite not showing any apparent intrinsic polarity. Clusters generate transient gradients in collagen density and alignment due to viscoelastic relaxation of the collagen networks. Combining theory and experiments, we show that crosslinking collagen networks or reducing cell cluster size results in reduced network deformation, shorter viscoelastic relaxation time and smaller gradients, leading to lower migration persistence. Traction force and Brillouin microscopy reveal asymmetries in force distributions and collagen stiffness during migration, providing evidence of mechanical cross-talk between cells and their substrate during migration. This physical model provides a mechanism for self-generated directional migration on viscoelastic substrates in the absence of internal biochemical polarity cues.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Colágeno / Matriz Extracelular Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2022 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Colágeno / Matriz Extracelular Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2022 Tipo del documento: Article País de afiliación: Francia
...