Your browser doesn't support javascript.
loading
A predictive microfluidic model of human glioblastoma to assess trafficking of blood-brain barrier-penetrant nanoparticles.
Straehla, Joelle P; Hajal, Cynthia; Safford, Hannah C; Offeddu, Giovanni S; Boehnke, Natalie; Dacoba, Tamara G; Wyckoff, Jeffrey; Kamm, Roger D; Hammond, Paula T.
Afiliación
  • Straehla JP; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139.
  • Hajal C; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115.
  • Safford HC; Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115.
  • Offeddu GS; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.
  • Boehnke N; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139.
  • Dacoba TG; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.
  • Wyckoff J; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139.
  • Kamm RD; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139.
  • Hammond PT; Center for Research in Molecular Medicine and Chronic Diseases, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain.
Proc Natl Acad Sci U S A ; 119(23): e2118697119, 2022 06 07.
Article en En | MEDLINE | ID: mdl-35648828
The blood­brain barrier represents a significant challenge for the treatment of high-grade gliomas, and our understanding of drug transport across this critical biointerface remains limited. To advance preclinical therapeutic development for gliomas, there is an urgent need for predictive in vitro models with realistic blood­brain-barrier vasculature. Here, we report a vascularized human glioblastoma multiforme (GBM) model in a microfluidic device that accurately recapitulates brain tumor vasculature with self-assembled endothelial cells, astrocytes, and pericytes to investigate the transport of targeted nanotherapeutics across the blood­brain barrier and into GBM cells. Using modular layer-by-layer assembly, we functionalized the surface of nanoparticles with GBM-targeting motifs to improve trafficking to tumors. We directly compared nanoparticle transport in our in vitro platform with transport across mouse brain capillaries using intravital imaging, validating the ability of the platform to model in vivo blood­brain-barrier transport. We investigated the therapeutic potential of functionalized nanoparticles by encapsulating cisplatin and showed improved efficacy of these GBM-targeted nanoparticles both in vitro and in an in vivo orthotopic xenograft model. Our vascularized GBM model represents a significant biomaterials advance, enabling in-depth investigation of brain tumor vasculature and accelerating the development of targeted nanotherapeutics.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias Encefálicas / Permeabilidad Capilar / Barrera Hematoencefálica / Glioblastoma / Nanopartículas Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias Encefálicas / Permeabilidad Capilar / Barrera Hematoencefálica / Glioblastoma / Nanopartículas Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2022 Tipo del documento: Article
...