Your browser doesn't support javascript.
loading
Industrial water consumption forecasting based on combined CEEMD-ARIMA model for Henan province, central chain: A case study.
Zhang, Xianqi; Zhao, Dong; Wang, Tao; Wu, Xilong.
Afiliación
  • Zhang X; Water Conservancy College, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China.
  • Zhao D; Collaborative Innovation Center of Water Resources Efficient Utilization and Protection Engineering, Zhengzhou, 450046, China.
  • Wang T; Technology Research Center of Water Conservancy and Marine Traffic Engineering, Henan Province, Zhengzhou, 450046, China.
  • Wu X; Water Conservancy College, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China. zdstep@yeah.net.
Environ Monit Assess ; 194(7): 471, 2022 Jun 02.
Article en En | MEDLINE | ID: mdl-35652955
Industrial water consumption is a major component of the total regional water consumption. Accurate and scientific prediction of industrial water consumption is an essential guide to the rational use of natural resources. In this paper, we proposed a combined model of CEEMD (collective empirical modal decomposition) and ARIMA (autoregressive integrated moving average) for forecasting industrial water consumption to establish an accurate and efficient forecasting model, because of the poor generalization ability of most current industrial water consumption forecasting models. The influencing factors of industrial water consumption are complex, and the data are non-stationary. "Decomposition-prediction-reconstruction" is one of the significant methods for forecasting time series data, and the data decomposition has a suppressive influence on the modal mixing problem in the EMD decomposition procedure. Based on the smoothing ability of CEEMD for non-smooth signals and the better adaptation of the autoregressive moving average prediction model (ARIMA), a combined CEEMD-ARIMA model was established for industrial water consumption forecasting. This study was conducted for industrial water consumption in Henan Province in central China. The results suggest the combined CEEMD-ARIMA model has a favorable forecasting effect, with an average relative percentage error of 1.96%, and mean square error (MSE) of 0.35, a Nash efficiency coefficient (NSE) of 0.95, a prediction pass rate of 100%, and a better prediction accuracy than the ARIMA model and the combined EEMD-ARIMA model. It provides an effective prediction method for the prediction of industrial water consumption and has good application prospects.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 2_ODS3 Problema de salud: 2_quimicos_contaminacion Asunto principal: Monitoreo del Ambiente / Ingestión de Líquidos Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans País/Región como asunto: Asia Idioma: En Revista: Environ Monit Assess Asunto de la revista: SAUDE AMBIENTAL Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 2_ODS3 Problema de salud: 2_quimicos_contaminacion Asunto principal: Monitoreo del Ambiente / Ingestión de Líquidos Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans País/Región como asunto: Asia Idioma: En Revista: Environ Monit Assess Asunto de la revista: SAUDE AMBIENTAL Año: 2022 Tipo del documento: Article País de afiliación: China
...