A Novel Genetic Neural Network Algorithm with Link Switches and Its Application in University Professional Course Evaluation.
Comput Intell Neurosci
; 2022: 9564443, 2022.
Article
en En
| MEDLINE
| ID: mdl-35655522
This study exploits a novel enhanced genetic neural network algorithm with link switches (EGA-NNLS) to model the professional university course evaluating system. Various indices should be employed to evaluate the learning effect of a professional course comprehensively and objectively, and the traditional artificial evaluation methods cannot achieve this goal. The presented data-driven modeling method, EGA-NNLS, combines a neural network with link switches (NN-LS) with an enhanced genetic algorithm (EGA) and the Levenberg-Marquardt (LM) algorithm. It employs an optimized network structure combined with EGA and NN-LS to learn the relationships between the system's input and output from historical data and uses the network's gradient information via the LM algorithm. Compared with the traditional backpropagation neural network (BPNN), EGA-NNLS achieves a faster convergence speed and higher evaluation precision. In order to verify the efficiency of EGA-NNLS, it is applied to a collection of experimental data for modeling the professional university course evaluating system.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Algoritmos
/
Redes Neurales de la Computación
Tipo de estudio:
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
Comput Intell Neurosci
Asunto de la revista:
INFORMATICA MEDICA
/
NEUROLOGIA
Año:
2022
Tipo del documento:
Article
País de afiliación:
China