Your browser doesn't support javascript.
loading
Development and implementation of patient-level prediction models of end-stage renal disease for type 2 diabetes patients using fast healthcare interoperability resources.
Wang, San; Han, Jieun; Jung, Se Young; Oh, Tae Jung; Yao, Sen; Lim, Sanghee; Hwang, Hee; Lee, Ho-Young; Lee, Haeun.
Afiliación
  • Wang S; Enolink, Cambridge, USA.
  • Han J; Department of Family Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
  • Jung SY; Department of Family Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea. syjung@snubh.org.
  • Oh TJ; Department of Digital Healthcare, Seoul National University Bundang Hospital, 172 Dolma-ro, Bundang-gu, Seongnam, 13620, Republic of Korea. syjung@snubh.org.
  • Yao S; Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea. ohtjmd@gmail.com.
  • Lim S; Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, 82 Gumi-ro, Bundang-gu, Seongnam, 13620, Republic of Korea. ohtjmd@gmail.com.
  • Hwang H; Enolink, Cambridge, USA.
  • Lee HY; Enolink, Cambridge, USA.
  • Lee H; Department of Digital Healthcare, Seoul National University Bundang Hospital, 172 Dolma-ro, Bundang-gu, Seongnam, 13620, Republic of Korea.
Sci Rep ; 12(1): 11232, 2022 07 04.
Article en En | MEDLINE | ID: mdl-35789173
This study aimed to develop a model to predict the 5-year risk of developing end-stage renal disease (ESRD) in patients with type 2 diabetes mellitus (T2DM) using machine learning (ML). It also aimed to implement the developed algorithms into electronic medical records (EMR) system using Health Level Seven (HL7) Fast Healthcare Interoperability Resources (FHIR). The final dataset used for modeling included 19,159 patients. The medical data were engineered to generate various types of features that were input into the various ML classifiers. The classifier with the best performance was XGBoost, with an area under the receiver operator characteristics curve (AUROC) of 0.95 and area under the precision recall curve (AUPRC) of 0.79 using three-fold cross-validation, compared to other models such as logistic regression, random forest, and support vector machine (AUROC range, 0.929-0.943; AUPRC 0.765-0.792). Serum creatinine, serum albumin, the urine albumin-to-creatinine ratio, Charlson comorbidity index, estimated GFR, and medication days of insulin were features that were ranked high for the ESRD risk prediction. The algorithm was implemented in the EMR system using HL7 FHIR through an ML-dedicated server that preprocessed unstructured data and trained updated data.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 1_ASSA2030 Problema de salud: 1_sistemas_informacao_saude Asunto principal: Atención a la Salud / Diabetes Mellitus Tipo 2 / Fallo Renal Crónico Tipo de estudio: Prognostic_studies / Risk_factors_studies Aspecto: Determinantes_sociais_saude / Implementation_research Límite: Humans Idioma: En Revista: Sci Rep Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 1_ASSA2030 Problema de salud: 1_sistemas_informacao_saude Asunto principal: Atención a la Salud / Diabetes Mellitus Tipo 2 / Fallo Renal Crónico Tipo de estudio: Prognostic_studies / Risk_factors_studies Aspecto: Determinantes_sociais_saude / Implementation_research Límite: Humans Idioma: En Revista: Sci Rep Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos
...