Your browser doesn't support javascript.
loading
Near-Quantitative Predictions of the First-Shell Coordination Structure of Hydrated First-Row Transition Metal Ions Using K-Edge X-ray Absorption Near-Edge Spectroscopy.
Ghosh, Soumen; Agarwal, Harsh; Galib, Mirza; Tran, Ba; Balasubramanian, Mahalingam; Singh, Nirala; Fulton, John L; Govind, Niranjan.
Afiliación
  • Ghosh S; Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.
  • Agarwal H; Department of Chemical Engineering and Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan 48109, United States.
  • Galib M; Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.
  • Tran B; Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.
  • Balasubramanian M; Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States.
  • Singh N; Department of Chemical Engineering and Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan 48109, United States.
  • Fulton JL; Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.
  • Govind N; Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.
J Phys Chem Lett ; 13(27): 6323-6330, 2022 Jul 14.
Article en En | MEDLINE | ID: mdl-35793526
ABSTRACT
The solvation structure of transition metal ions is important for applications in geochemistry, biochemistry, energy storage, and environmental chemistry. We study the X-ray absorption pre-edge and near-edge spectra at the K-edge of a nearly complete series of hydrated first-row transition metal ions with d orbital occupancy from d2 to d10. We optimize all of the structures at the density functional theory (DFT) level with explicit solvation and then compute the pre-edge X-ray absorption spectra with time-dependent DFT (TDDFT) and restricted active space second-order perturbation theory (RASPT2). TDDFT provides accurate results for spectra that are dominated by single excitations, while RASPT2 correctly distinguishes between singly and doubly excited states with quantitative accuracy compared with experiment. We analyze the pre-edge features for each metal ion to reveal the impact of the variations in d orbital occupancy on the first-shell coordination environment. We also report the lowest-energy ligand field d-d transitions using complete active space second-order perturbation theory.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Elementos de Transición Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Phys Chem Lett Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Elementos de Transición Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Phys Chem Lett Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos
...