Your browser doesn't support javascript.
loading
Left-Right Locomotor Coordination in Human Neonates.
Dewolf, Arthur H; La Scaleia, Valentina; Fabiano, Adele; Sylos-Labini, Francesca; Mondi, Vito; Picone, Simonetta; Di Paolo, Ambrogio; Paolillo, Piermichele; Ivanenko, Yuri; Lacquaniti, Francesco.
Afiliación
  • Dewolf AH; Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, 00133 Rome, Italy arthur.dewolf@uclouvain.be francesco.lacquaniti@uniroma2.it.
  • La Scaleia V; Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, 00179 Rome, Italy.
  • Fabiano A; Neonatology and Neonatal Intensive Care Unit, Casilino Hospital, 00169 Rome, Italy.
  • Sylos-Labini F; Neonatology and Neonatal Intensive Care Unit, Ospedale San Giovanni, 00184 Rome, Italy.
  • Mondi V; Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, 00179 Rome, Italy.
  • Picone S; Neonatology and Neonatal Intensive Care Unit, Casilino Hospital, 00169 Rome, Italy.
  • Di Paolo A; Neonatology and Neonatal Intensive Care Unit, Casilino Hospital, 00169 Rome, Italy.
  • Paolillo P; Neonatology and Neonatal Intensive Care Unit, Ospedale San Giovanni, 00184 Rome, Italy.
  • Ivanenko Y; Neonatology and Neonatal Intensive Care Unit, Casilino Hospital, 00169 Rome, Italy.
  • Lacquaniti F; Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, 00179 Rome, Italy.
J Neurosci ; 42(34): 6566-6580, 2022 08 24.
Article en En | MEDLINE | ID: mdl-35831172
ABSTRACT
Terrestrial locomotion requires coordinated bilateral activation of limb muscles, with left-right alternation in walking or running, and synchronous activation in hopping or skipping. The neural mechanisms involved in interlimb coordination at birth are well known in different mammalian species, but less so in humans. Here, 46 neonates (of either sex) performed bilateral and unilateral stepping with one leg blocked in different positions. By recording EMG activities of lower-limb muscles, we observed episodes of left-right alternating or synchronous coordination. In most cases, the frequency of EMG oscillations during sequences of consecutive steps was approximately similar between the two sides, but in some cases it was considerably different, with episodes of 21 interlimb coordination and episodes of activity deletions on the blocked side. Hip position of the blocked limb significantly affected ipsilateral, but not contralateral, muscle activities. Thus, hip extension backward engaged hip flexor muscle, and hip flexion engaged hip extensors. Moreover, the sudden release of the blocked limb in the posterior position elicited the immediate initiation of the swing phase of the limb, with hip flexion and a burst of an ankle flexor muscle. Extensor muscles showed load responses at midstance. The variable interlimb coordination and its incomplete sensory modulation suggest that the neonatal locomotor networks do not operate in the same manner as in mature locomotion, also because of the limited cortical control at birth. These neonatal mechanisms share many properties with spinal mammalian preparations (i.e., independent pattern generators for each limb, and for flexor and extensor muscles, load, and hip position feedback).SIGNIFICANCE STATEMENT Bilateral coupling and reciprocal activation of flexor and extensor burst generators represent the fundamental mechanisms used by mammalian limbed locomotion. Considerable progress has been made in deciphering the early development of the spinal networks and left-right coordination in different mammals, but less is known about human newborns. We compared bilateral and unilateral stepping in human neonates, where cortical control is still underdeveloped. We found neonatal mechanisms that share many properties with spinal mammalian preparations (i.e., independent pattern generators for each limb, the independent generators for flexor and extensor muscles, load, and hip-position feedback. The variable interlimb coordination and its incomplete sensory modulation suggest that the human neonatal locomotor networks do not operate in the same manner as in mature locomotion.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Músculo Esquelético / Locomoción Límite: Animals / Humans / Newborn Idioma: En Revista: J Neurosci Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Músculo Esquelético / Locomoción Límite: Animals / Humans / Newborn Idioma: En Revista: J Neurosci Año: 2022 Tipo del documento: Article
...