Your browser doesn't support javascript.
loading
An accurate prediction model of digenic interaction for estimating pathogenic gene pairs of human diseases.
Yuan, Yangyang; Zhang, Liubin; Long, Qihan; Jiang, Hui; Li, Miaoxin.
Afiliación
  • Yuan Y; Program in Bioinformatics, Zhongshan School of Medicine and The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
  • Zhang L; Center for Precision Medicine, Sun Yat-sen University, Guangzhou 510080, China.
  • Long Q; Center for Disease Genome Research, Sun Yat-sen University, Guangzhou 510080, China.
  • Jiang H; Program in Bioinformatics, Zhongshan School of Medicine and The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
  • Li M; Center for Precision Medicine, Sun Yat-sen University, Guangzhou 510080, China.
Comput Struct Biotechnol J ; 20: 3639-3652, 2022.
Article en En | MEDLINE | ID: mdl-35891796
Increasing evidence shows that genetic interaction across the entire genome may explain a non-trivial fraction of genetic diseases. Digenic interaction is the simplest manifestation of genetic interaction among genes. However, systematic exploration of digenic interactive effects on the whole genome is often discouraged by the high dimension burden. Thus, numerous digenic interactions are yet to be identified for many diseases. Here, we propose a Digenic Interaction Effect Predictor (DIEP), an accurate machine-learning approach to identify the genome-wide pathogenic coding gene pairs with digenic interaction effects. This approach achieved high accuracy and sensitivity in independent testing datasets, outperforming another gene-level digenic predictor (DiGePred). DIEP was also able to discriminate digenic interaction effect from bi-locus effects dual molecular diagnosis (pseudo-digenic). Using DIEP, we provided a valuable resource of genome-wide digenic interactions and demonstrated the enrichment of the digenic interaction effect in Mendelian and Oligogenic diseases. Therefore, DIEP will play a useful role in facilitating the genomic mapping of interactive causal genes for human diseases.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Comput Struct Biotechnol J Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Comput Struct Biotechnol J Año: 2022 Tipo del documento: Article País de afiliación: China
...