Your browser doesn't support javascript.
loading
Ensemble methods for survival function estimation with time-varying covariates.
Yao, Weichi; Frydman, Halina; Larocque, Denis; Simonoff, Jeffrey S.
Afiliación
  • Yao W; 5894New York University, New York, NY, USA.
  • Frydman H; 5894New York University, New York, NY, USA.
  • Larocque D; HEC Montréal, Montréal, Québec, CA.
  • Simonoff JS; 5894New York University, New York, NY, USA.
Stat Methods Med Res ; 31(11): 2217-2236, 2022 11.
Article en En | MEDLINE | ID: mdl-35895510
Survival data with time-varying covariates are common in practice. If relevant, they can improve on the estimation of a survival function. However, the traditional survival forests-conditional inference forest, relative risk forest and random survival forest-have accommodated only time-invariant covariates. We generalize the conditional inference and relative risk forests to allow time-varying covariates. We also propose a general framework for estimation of a survival function in the presence of time-varying covariates. We compare their performance with that of the Cox model and transformation forest, adapted here to accommodate time-varying covariates, through a comprehensive simulation study in which the Kaplan-Meier estimate serves as a benchmark, and performance is compared using the integrated L2 difference between the true and estimated survival functions. In general, the performance of the two proposed forests substantially improves over the Kaplan-Meier estimate. Taking into account all other factors, under the proportional hazard setting, the best method is always one of the two proposed forests, while under the non-proportional hazard setting, it is the adapted transformation forest. K-fold cross-validation is used as an effective tool to choose between the methods in practice.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proyectos de Investigación Tipo de estudio: Etiology_studies / Prognostic_studies Idioma: En Revista: Stat Methods Med Res Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proyectos de Investigación Tipo de estudio: Etiology_studies / Prognostic_studies Idioma: En Revista: Stat Methods Med Res Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos
...