Your browser doesn't support javascript.
loading
Blending Technology Based on HPLC Fingerprint and Nonlinear Programming to Control the Quality of Ginkgo Leaves.
Liu, Zhe; Li, Guixin; Zhang, Yu; Jin, Hongli; Liu, Yucheng; Dong, Jiatao; Li, Xiaonong; Liu, Yanfang; Liang, Xinmiao.
Afiliación
  • Liu Z; Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
  • Li G; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Zhang Y; Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
  • Jin H; Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
  • Liu Y; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Dong J; Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
  • Li X; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330100, China.
  • Liu Y; Heilongjiang ZhenBaoDao Pharmaceutical Co., Ltd., Haerbin 158400, China.
  • Liang X; Heilongjiang ZhenBaoDao Pharmaceutical Co., Ltd., Haerbin 158400, China.
Molecules ; 27(15)2022 Jul 25.
Article en En | MEDLINE | ID: mdl-35897910
ABSTRACT
The breadth and depth of traditional Chinese medicine (TCM) applications have been expanding in recent years, yet the problem of quality control has arisen in the application process. It is essential to design an algorithm to provide blending ratios that ensure a high overall product similarity to the target with controlled deviations in individual ingredient content. We developed a new blending algorithm and scheme by comparing different samples of ginkgo leaves. High-consistency samples were used to establish the blending target, and qualified samples were used for blending. Principal component analysis (PCA) was used as the sample screening method. A nonlinear programming algorithm was applied to calculate the blending ratio under different blending constraints. In one set of calculation experiments, the result was blended by the same samples under different conditions. Its relative deviation coefficients (RDCs) were controlled within ±10%. In another set of calculations, the RDCs of more component blending by different samples were controlled within ±20%. Finally, the near-critical calculation ratio was used for the actual experiments. The experimental results met the initial setting requirements. The results show that our algorithm can flexibly control the content of TCMs. The quality control of the production process of TCMs was achieved by improving the content stability of raw materials using blending. The algorithm provides a groundbreaking idea for quality control of TCMs.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Medicamentos Herbarios Chinos / Ginkgo biloba Tipo de estudio: Diagnostic_studies Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Medicamentos Herbarios Chinos / Ginkgo biloba Tipo de estudio: Diagnostic_studies Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: China
...