Your browser doesn't support javascript.
loading
Substitution Effects on the Reactivity and Thermostability of Five-Membered Ring Fluorides.
Zhang, Tongyun; Zhang, Chengping; Ma, Xiaoxun; Quan, Hengdao.
Afiliación
  • Zhang T; School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
  • Zhang C; School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China.
  • Ma X; School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
  • Quan H; School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China.
ACS Omega ; 7(29): 25476-25490, 2022 Jul 26.
Article en En | MEDLINE | ID: mdl-35910138
ABSTRACT
Recently, five-membered ring fluorides (c-C5Fs) have been significantly desirable in green chlorofluorocarbon substitutes due to their practically flexible application in various fields and environmental friendliness. Detailed knowledge regarding different substitution effects on their environmental properties and thermal stability is very limited due to their high-cost experiments. Here, comprehensive density functional theory and ab initio molecular dynamics calculations were performed to explore the relative electrophilic and nucleophilic reactivity and thermostability of c-C5F chemicals. The electronic properties induced by substitution effects of c-C5Fs were first explored. The environmental friendliness of c-C5Fs including 1,1,2,2,3,3-hexafluorocyclopentane (F6A), 1,1,2,2,3,3,4-heptafluorocyclopentane (F7A), cis-1,1,2,2,3,3,4,5-octafluorocyclopentane (F8A), 3,3,4,4,5,5-hexafluorocyclopentene (F6E), 1,3,3,4,4,5,5-heptafluorocyclopentene (F7E), octafluorocyclopentene (F8E), 1-chloro-3,3,4,4,5,5-hexafluorocyclopent-1-ene (F6-1), and 1-chloro-2,3,3,4,4,5,5-heptafluorocyclopent-1-ene (F7-1) was validly confirmed. Besides, their thermal stabilities at 600 K temperature were concluded due to their flexible carbon skeletons, where both in-plane stability and slight aromaticity of F6E were in peculiar found to contribute substantially. We also would like to stress the future application of F6-1 due to its significant out-plane stability. This study may pave the way for the development of chlorofluorocarbon substitutes.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Omega Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Omega Año: 2022 Tipo del documento: Article País de afiliación: China
...