Charge Transfer-Triggered Bi3+ Near-Infrared Emission in Y2Ti2O7 for Dual-Mode Temperature Sensing.
ACS Appl Mater Interfaces
; 14(32): 36834-36844, 2022 Aug 17.
Article
en En
| MEDLINE
| ID: mdl-35921172
Trivalent bismuth is a popular main group ion showing versatile luminescent behaviors in a broad spectral range from ultraviolet to visible, but barely in the near-infrared (NIR) region. In this study, we have observed unexpected NIR emission at â¼744 nm in a Bi3+-doped pyrochlore, Y2Ti2O7 (YTOB). Our first-principles electronic structure calculation and analysis of the Bi local structure via extended X-ray absorption fine structure indicate that only Bi3+ species appears in YTOB and it has a similar local environment to that of Y3+. The NIR emission is assigned to a Ti4+ â Bi3+ metal-to-metal charge transfer process. Moreover, we have demonstrated dual-mode luminescence thermometry based on the luminescence intensity ratio (LIR) and lifetime (τ) in 0.5% Bi3+ and 0.5% Pr3+ co-doped Y2Ti2O7 (YTOB0.5P0.5). It exhibits high thermometric sensitivity simultaneously in the cryogenic temperature range from 78 to 298 K based on τ of the NIR emission of Bi3+ at 748 nm and in the temperature range of 278-378 K based on the LIR of Bi3+ to Pr3+ emissions (I748/I615). As a novel LIR-τ dual-mode thermometric material over a wide temperature range, the maximum relative sensitivities of the YTOB0.5P0.5 reach 3.53% K-1 at 298 K from the τ mode and 3.52% K-1 at 318 K based on the LIR mode. The dual-mode luminescence thermometry with high responsivity from our Bi3+-based pyrochlore Y2Ti2O7 phosphor opens a new avenue for more luminescent materials toward multi-mode thermometry applied in complex temperature-sensing conditions.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
ACS Appl Mater Interfaces
Asunto de la revista:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Año:
2022
Tipo del documento:
Article
País de afiliación:
Estados Unidos