Your browser doesn't support javascript.
loading
Extreme gradient boosting model to assess risk of central cervical lymph node metastasis in patients with papillary thyroid carcinoma: Individual prediction using SHapley Additive exPlanations.
Zou, Ying; Shi, Yan; Sun, Fang; Liu, Jihua; Guo, Yu; Zhang, Huanlei; Lu, Xiudi; Gong, Yan; Xia, Shuang.
Afiliación
  • Zou Y; Department of Radiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No. 314 Anshan West Road, Nan Kai District, Tianjin 300193, China; Department of Radiology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, No. 314 Anshan West
  • Shi Y; Department of Ultrasonography, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou City, Shandong 256603, China.
  • Sun F; Department of Ultrasonography, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou City, Shandong 256603, China.
  • Liu J; Department of Radiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No. 314 Anshan West Road, Nan Kai District, Tianjin 300193, China; Department of Radiology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, No. 314 Anshan West
  • Guo Y; Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, No.24 Fukang Road, Nankai District, Tianjin 300192, China.
  • Zhang H; Department of Radiologist, Yidu central hospital of Weifang, No. 4138 LingLongShan nan Road, Qing Zhou City, Shandong, 262500, China.
  • Lu X; Department of Radiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No. 314 Anshan West Road, Nan Kai District, Tianjin 300193, China; Department of Radiology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, No. 314 Anshan West
  • Gong Y; Department of Radiology, Tianjin Hospital of ITCWM Nan Kai Hospital, No.6 Changjiang Road, Nan Kai District, Tianjin 300100, China.
  • Xia S; Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, No.24 Fukang Road, Nankai District, Tianjin 300192, China. Electronic address: xiashuang77@163.com.
Comput Methods Programs Biomed ; 225: 107038, 2022 Oct.
Article en En | MEDLINE | ID: mdl-35930861
BACKGROUND AND OBJECTIVES: Central cervical lymph node metastasis (CLNM) is considered a risk factor for recurrence in patients with papillary thyroid carcinoma (PTC). Traditional machine learning models suffered from "black-box" problems, which could not exactly explain the interactive effects of the risk factors. We aimed to develop an eXtreme Gradient Boosting (XGBoost) model to assess CLNM, including positive and negative effects. METHODS: 1,122 patients with PTC admitted at Tianjin First Central Hospital from 2016 to 2020 were retrospectively selected. They were randomly divided into the training and test datasets with an 8:2 ratio. 108 patients with PTC admitted at Binzhou Medical University Hospital in 2020 served as the validation dataset. The XGBoost model was used to assess CLNM. The 10-fold cross-validation was utilized for model selection, and the metric used to evaluate classification performance was the average area under the curve (AUC) of 10-fold cross-validation. Interpretation and transparency of the "black-box" problem were performed. SHapley Additive exPlanations (SHAP) and local interpretable model-agnostic explanation (LIME) were used to ensure the stability and reliability of the model. RESULTS: The XGBoost model based on ultrasound and dual-energy computed tomography images of the solitary primary lesion had an excellent performance for assessing CLNM, with average AUCs of 0.918, 0.903, and 0.881 in the training, test, and validation datasets, respectively. SHAP plots showed the influence of each parameter on the XGBoost model, including positive (i.e., capsular invasion, diameter, iodine concentration in the venous phase, and calcification) and negative (i.e., sex and age) impacts. For all cases, the capsular invasion prediction weight was the highest; for individual cases, different predictors were assigned different weights. Moreover, the performance of the XGBoost model was better than classical machine-learning models. CONCLUSIONS: This study developed and validated an XGBoost model for assessing CLNM in patients with PTC. The ability to visually interpret the positive and negative effects made the XGBoost model an effective tool for guiding clinical treatment.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias de la Tiroides / Yodo Tipo de estudio: Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Comput Methods Programs Biomed Asunto de la revista: INFORMATICA MEDICA Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias de la Tiroides / Yodo Tipo de estudio: Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Comput Methods Programs Biomed Asunto de la revista: INFORMATICA MEDICA Año: 2022 Tipo del documento: Article
...