Your browser doesn't support javascript.
loading
AMER3 variants modify the U-shaped association of urinary total hydroxyphenanthrene with fasting plasma glucose: A newfound gene-environment interaction.
Nie, Xiuquan; Yang, Shijie; Mu, Ge; Wang, Mengyi; Ye, Zi; Zhou, Min; Dai, Wencan; Chen, Weihong.
Afiliación
  • Nie X; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Ke
  • Yang S; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Ke
  • Mu G; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Ke
  • Wang M; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Ke
  • Ye Z; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Ke
  • Zhou M; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Ke
  • Dai W; Zhuhai Center for Disease Control and Prevention, Zhuhai, Guangdong, 519060, China.
  • Chen W; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Ke
Environ Pollut ; 310: 119898, 2022 Oct 01.
Article en En | MEDLINE | ID: mdl-35940488
ABSTRACT
As a polycyclic aromatic hydrocarbon, environmental exposure to phenanthrene is widespread worldwide. The potential effects and mechanism of phenanthrene exposure on fasting plasma glucose (FPG) have not been well determined. In this study, we aim to explore the effects of phenanthrene exposure and AMER3 variants on fasting plasma glucose (FPG) through a longitudinal epidemiological study. Repeated measurements of five urinary hydroxyphenanthrene (OHPh) for 5739 participants with 7083 observations from the Wuhan-Zhuhai cohort were performed to analyze the relationships between total OHPh (ΣOHPh) and FPG using linear mixed models and restricted cubic spline functions. Then, we genotyped 2777 participants (4104 observations) using the Infinium OmniZhongHua-8 BeadChip and included all 14 single nucleotide polymorphisms (SNPs) within the AMER3 gene to analyze the interaction of the AMER3 on the relationship between ΣOHPh and FPG. We observed a U-shaped relationship between ΣOHPh and FPG, and the turning point of ΣOHPh was 2.512 µg/mmol Cr. When lower than the turning point, ΣOHPh was negatively associated with FPG, while higher than the turning point, ΣOHPh was positively associated with FPG. Furthermore, we observed interactions (Pint <0.05) between two common variants (rs72854995 and rs72854999) of the AMER3 and ΣOHPh on FPG change the U-shaped relationship was still observed in the GG genotype groups but not in the allele A carriers. Our results suggested that the AMER3 gene can modify the U-shaped relationship between phenanthrenes exposure and FPG, which showed a new gene-environment interaction and will provide a new perspective on the relationship between phenanthrene exposure and FPG.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Hidrocarburos Policíclicos Aromáticos / Ayuno Tipo de estudio: Risk_factors_studies Límite: Humans Idioma: En Revista: Environ Pollut Asunto de la revista: SAUDE AMBIENTAL Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Hidrocarburos Policíclicos Aromáticos / Ayuno Tipo de estudio: Risk_factors_studies Límite: Humans Idioma: En Revista: Environ Pollut Asunto de la revista: SAUDE AMBIENTAL Año: 2022 Tipo del documento: Article
...