Your browser doesn't support javascript.
loading
Dynamic response of high-entropy alloys to ballistic impact.
Tang, Yunqing; Li, D Y.
Afiliación
  • Tang Y; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2H5, Canada.
  • Li DY; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2H5, Canada.
Sci Adv ; 8(32): eabp9096, 2022 Aug 12.
Article en En | MEDLINE | ID: mdl-35960800
ABSTRACT
High-entropy alloys (HEAs) are promising to provide effective antiballistic capability because of their superior mechanical properties. However, the twinning-active Cantor alloy is found less ballistic resistant, compared with its Mn-free companion. It is unclear how the HEAs resist ballistic impact and why Mn does not benefit the ballistic resistance. Here, we used molecular dynamics simulations to investigate the ballistic resistances of CrMnFeCoNi and CrFeCoNi and elucidate underlying mechanisms. It is shown that the alloys' ballistic resistances dominantly benefit from active dislocations generated at higher strain rates. Stronger atomic bonding and higher dislocation densities make the CrFeCoNi easier to be strain hardened with elevated toughness to resist high-speed deformation, while weaker atomic bonding and easier occurrence of dislocation tangling make CrMnFeCoNi less resistant to failure under ballistic impact. This work helps better understand the antiballistic behavior of HEAs and guide the design of armor and energy-absorption materials.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Adv Año: 2022 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Adv Año: 2022 Tipo del documento: Article País de afiliación: Canadá
...