Your browser doesn't support javascript.
loading
Constraints on the evolution of toxin-resistant Na,K-ATPases have limited dependence on sequence divergence.
Mohammadi, Shabnam; Herrera-Álvarez, Santiago; Yang, Lu; Rodríguez-Ordoñez, María Del Pilar; Zhang, Karen; Storz, Jay F; Dobler, Susanne; Crawford, Andrew J; Andolfatto, Peter.
Afiliación
  • Mohammadi S; School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America.
  • Herrera-Álvarez S; Molecular Evolutionary Biology, Institut für Zell- und Systembiologie der Tiere, Universität Hamburg, Hamburg, Germany.
  • Yang L; Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia.
  • Rodríguez-Ordoñez MDP; Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America.
  • Zhang K; Department of Ecology and Evolution, Princeton University, Princeton, New Jersey, United States of America.
  • Storz JF; Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia.
  • Dobler S; Department of Ecology and Evolution, Princeton University, Princeton, New Jersey, United States of America.
  • Crawford AJ; School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America.
  • Andolfatto P; Molecular Evolutionary Biology, Institut für Zell- und Systembiologie der Tiere, Universität Hamburg, Hamburg, Germany.
PLoS Genet ; 18(8): e1010323, 2022 08.
Article en En | MEDLINE | ID: mdl-35972957
ABSTRACT
A growing body of theoretical and experimental evidence suggests that intramolecular epistasis is a major determinant of rates and patterns of protein evolution and imposes a substantial constraint on the evolution of novel protein functions. Here, we examine the role of intramolecular epistasis in the recurrent evolution of resistance to cardiotonic steroids (CTS) across tetrapods, which occurs via specific amino acid substitutions to the α-subunit family of Na,K-ATPases (ATP1A). After identifying a series of recurrent substitutions at two key sites of ATP1A that are predicted to confer CTS resistance in diverse tetrapods, we then performed protein engineering experiments to test the functional consequences of introducing these substitutions onto divergent species backgrounds. In line with previous results, we find that substitutions at these sites can have substantial background-dependent effects on CTS resistance. Globally, however, these substitutions also have pleiotropic effects that are consistent with additive rather than background-dependent effects. Moreover, the magnitude of a substitution's effect on activity does not depend on the overall extent of ATP1A sequence divergence between species. Our results suggest that epistatic constraints on the evolution of CTS-resistant forms of Na,K-ATPase likely depend on a small number of sites, with little dependence on overall levels of protein divergence. We propose that dependence on a limited number sites may account for the observation of convergent CTS resistance substitutions observed among taxa with highly divergent Na,K-ATPases (See S1 Text for Spanish translation).
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Toxinas Biológicas / ATPasa Intercambiadora de Sodio-Potasio Idioma: En Revista: PLoS Genet Asunto de la revista: GENETICA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Toxinas Biológicas / ATPasa Intercambiadora de Sodio-Potasio Idioma: En Revista: PLoS Genet Asunto de la revista: GENETICA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos
...