Your browser doesn't support javascript.
loading
Development of markers using microsatellite loci of two rove beetle species, Paederus fuscipes Curtis and Aleochara (Aleochara) curtula Goeze (Coleoptera: Staphylinidae), followed by analyses of genetic diversity and population structure.
Choi, Yeon-Jae; Yi, Jeesoo; Lee, Chan-Jun; Kim, Ji-Wook; Jeon, Mi-Jeong; Park, Jong-Seok; Cho, Sung-Jin.
Afiliación
  • Choi YJ; Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
  • Yi J; Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
  • Lee CJ; Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
  • Kim JW; Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
  • Jeon MJ; National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, Republic of Korea.
  • Park JS; Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, 28644, Republic of Korea. jpark16@cbnu.ac.kr.
  • Cho SJ; Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, 28644, Republic of Korea. sjchobio@chungbuk.ac.kr.
Genes Genomics ; 44(12): 1471-1476, 2022 12.
Article en En | MEDLINE | ID: mdl-35982374
ABSTRACT

BACKGROUND:

The family Staphylinidae is the most speciose beetle group in the world. The outbreaks of two staphylinid species, Paederus fuscipes and Aleochara (Aleochara) curtula, were recently reported in South Korea. None of research about molecular markers and genetic diversity have been conducted in these two species.

OBJECTIVE:

To develop microsatellite markers and analyze the genetic diversity and population structures of two rove beetle species.

METHODS:

NGS was used to sequence whole genomes of two species, Paederus fuscipes and Aleochara (Aleochara) curtula. Microsatellite loci were selected with flanking primer sequences. Specimens of P. fuscipes and A. curtula were collected from three localities, respectively. Genetic diversity and population structure were analyzed using the newly developed microsatellite markers.

RESULTS:

The number of alleles ranged 5.727-6.636 (average 6.242) and 2.182-5.364 (average 4.091), expected heterozygosity ranged 0.560-0.582 (average 0.570) and 0.368-0.564 (average 0.498), observed heterozygosity ranged 0.458-0.497 (average 0.472) and 0.418-0.644 (average 0.537) in P. fuscipes and A. curtula, respectively. Population structure indicates that individuals of A. curtula are clustered to groups where they were collected, but those of P. fuscipes are not.

CONCLUSION:

Population structures of P. fuscipes were shallow. In A. curtula, however, it was apparent that the genetic compositions of the populations are different significantly depending on collection localities.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Escarabajos Límite: Animals País/Región como asunto: Asia Idioma: En Revista: Genes Genomics Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Escarabajos Límite: Animals País/Región como asunto: Asia Idioma: En Revista: Genes Genomics Año: 2022 Tipo del documento: Article
...