Your browser doesn't support javascript.
loading
Nucleotide excision repair removes thymidine analog 5-ethynyl-2'-deoxyuridine from the mammalian genome.
Wang, Li; Cao, Xuemei; Yang, Yanyan; Kose, Cansu; Kawara, Hiroaki; Lindsey-Boltz, Laura A; Selby, Christopher P; Sancar, Aziz.
Afiliación
  • Wang L; Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599.
  • Cao X; Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599.
  • Yang Y; Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599.
  • Kose C; Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599.
  • Kawara H; Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599.
  • Lindsey-Boltz LA; Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599.
  • Selby CP; Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599.
  • Sancar A; Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599.
Proc Natl Acad Sci U S A ; 119(35): e2210176119, 2022 08 30.
Article en En | MEDLINE | ID: mdl-35994676
ABSTRACT
Nucleotide excision repair is the principal mechanism for removing bulky DNA adducts from the mammalian genome, including those induced by environmental carcinogens such as UV radiation, and anticancer drugs such as cisplatin. Surprisingly, we found that the widely used thymidine analog EdU is a substrate for excision repair when incorporated into the DNA of replicating cells. A number of thymidine analogs were tested, and only EdU was a substrate for excision repair. EdU excision was absent in repair-deficient cells, and in vitro, DNA duplexes bearing EdU were also substrates for excision by mammalian cell-free extracts. We used the excision repair sequencing (XR-seq) method to map EdU repair in the human genome at single-nucleotide resolution and observed that EdU was excised throughout the genome and was subject to transcription-coupled repair as evidenced by higher repair rates in the transcribed strand (TS) relative to the nontranscribed strand (NTS) in transcriptionally active genes. These properties of EdU, combined with its cellular toxicity and ability to cross the blood-brain barrier, make it a potential candidate for treating cancers of the brain, a tissue that typically demonstrates limited replication in adults.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Daño del ADN / Desoxiuridina / Reparación del ADN Límite: Humans Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Daño del ADN / Desoxiuridina / Reparación del ADN Límite: Humans Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2022 Tipo del documento: Article
...