Your browser doesn't support javascript.
loading
How Lévy Flights Triggered by the Presence of Defectors Affect Evolution of Cooperation in Spatial Games.
Ichinose, Genki; Miyagawa, Daiki; Chiba, Erika; Sayama, Hiroki.
Afiliación
  • Ichinose G; Shizuoka University, Department of Mathematical and Systems Engineering. ichinose.genki@shizuoka.ac.jp.
  • Miyagawa D; Shizuoka University, Department of Mathematical and Systems Engineering. miyagawa.daiki.18@shizuoka.ac.jp.
  • Chiba E; Nagoya University, Graduate School of Informatics. chiba.erika.j1@s.mail.nagoya-u.ac.jp.
  • Sayama H; Waseda University, Waseda Innovation Lab.
Artif Life ; 29(2): 187-197, 2023 05 01.
Article en En | MEDLINE | ID: mdl-36018771
Cooperation among individuals has been key to sustaining societies. However, natural selection favors defection over cooperation. Cooperation can be favored when the mobility of individuals allows cooperators to form a cluster (or group). Mobility patterns of animals sometimes follow a Lévy flight. A Lévy flight is a kind of random walk but it is composed of many small movements with a few big movements. The role of Lévy flights for cooperation has been studied by Antonioni and Tomassini, who showed that Lévy flights promoted cooperation combined with conditional movements triggered by neighboring defectors. However, the optimal condition for neighboring defectors and how the condition changes with the intensity of Lévy flights are still unclear. Here, we developed an agent-based model in a square lattice where agents perform Lévy flights depending on the fraction of neighboring defectors. We systematically studied the relationships among three factors for cooperation: sensitivity to defectors, the intensity of Lévy flights, and population density. Results of evolutionary simulations showed that moderate sensitivity most promoted cooperation. Then, we found that the shortest movements were best for cooperation when the sensitivity to defectors was high. In contrast, when the sensitivity was low, longer movements were best for cooperation. Thus, Lévy flights, the balance between short and long jumps, promoted cooperation in any sensitivity, which was confirmed by evolutionary simulations. Finally, as the population density became larger, higher sensitivity was more beneficial for cooperation to evolve. Our study highlights that Lévy flights are an optimal searching strategy not only for foraging but also for constructing cooperative relationships with others.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Conducta Cooperativa / Teoría del Juego Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Artif Life Asunto de la revista: BIOLOGIA Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Conducta Cooperativa / Teoría del Juego Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Artif Life Asunto de la revista: BIOLOGIA Año: 2023 Tipo del documento: Article
...