Insight on the Role of Poly(acrylic acid) for Directing Calcium Phosphate Mineralization of Synthetic Polymer Bone Scaffolds.
ACS Appl Bio Mater
; 2022 Aug 31.
Article
en En
| MEDLINE
| ID: mdl-36044781
Bone is a complex tissue with robust mechanical and biological properties originating from its nanoscale composite structure. Although much research has been conducted on designing bioinspired artificial bone, the role of biological macromolecules such as noncollagenous proteins (NCPs) in influencing the formation of biominerals is not fully understood. In this work, we have designed nanofiber shish-kebab (NFSK) structures that can template mineral location by recruiting calcium cations from an ion-rich mineralization solution. Poly(acrylic acid) (PAA) is used as the NCP analogue to understand the role of polyelectrolytes in scaffold mineralization. We demonstrate that the addition of PAA in the mineralization solution suppresses the development of extrafibrillar minerals as well as slows down the accumulation and development of mineral phases within NFSKs. We probe the mechanism behind this effect by monitoring the free calcium ion concentration, investigating the PAA molecular weight effect, and conducting mineralization in membrane-partitioned solutions. Our results suggest the 2-fold effect of PAA as a solution stabilizer and physical barrier on the NFSK surface. This work could shed light on the understanding of the NCP effect in biomineralization.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
ACS Appl Bio Mater
Año:
2022
Tipo del documento:
Article
País de afiliación:
Estados Unidos