Your browser doesn't support javascript.
loading
Piezo1 Response to Shear Stress Is Controlled by the Components of the Extracellular Matrix.
Lai, Austin; Thurgood, Peter; Cox, Charles D; Chheang, Chanly; Peter, Karlheinz; Jaworowski, Anthony; Khoshmanesh, Khashayar; Baratchi, Sara.
Afiliación
  • Lai A; School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria 3082, Australia.
  • Thurgood P; School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.
  • Cox CD; Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia.
  • Chheang C; School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria 3082, Australia.
  • Peter K; Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.
  • Jaworowski A; Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria 3010, Australia.
  • Khoshmanesh K; School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria 3082, Australia.
  • Baratchi S; School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.
ACS Appl Mater Interfaces ; 14(36): 40559-40568, 2022 Sep 14.
Article en En | MEDLINE | ID: mdl-36047858
ABSTRACT
Piezo1 is a recently discovered Ca2+ permeable ion channel that has emerged as an integral sensor of hemodynamic forces within the cardiovascular system, contributing to vascular development and blood pressure regulation. However, how the composition of the extracellular matrix (ECM) affects the mechanosensitivity of Piezo1 in response to hemodynamic forces remains poorly understood. Using a combination of microfluidics and calcium imaging techniques, we probe the shear stress sensitivity of single HEK293T cells engineered to stably express Piezo1 in the presence of different ECM proteins. Our experiments show that Piezo1 sensitivity to shear stress is not dependent on the presence of ECM proteins. However, different ECM proteins regulate the sensitivity of Piezo1 depending on the shear stress level. Under high shear stress, fibronectin sensitizes Piezo1 response to shear, while under low shear stress, Piezo1 mechanosensitivity is improved in the presence of collagen types I and IV and laminin. Moreover, we report that α5ß1 and αvß3 integrins are involved in Piezo1 sensitivity at high shear, while αvß3 and αvß5 integrins are involved in regulating the Piezo1 response at low shear stress. These results demonstrate that the ECM/integrin interactions influence Piezo1 mechanosensitivity and could represent a mechanism whereby extracellular forces are transmitted to Piezo1 channels, providing new insights into the mechanism by which Piezo1 senses shear stress.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Mecanotransducción Celular / Canales Iónicos Límite: Humans Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Mecanotransducción Celular / Canales Iónicos Límite: Humans Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: Australia
...