Your browser doesn't support javascript.
loading
Photo-Reactivity and Photo-Transformation of Algal Dissolved Organic Matter Unraveled by Optical Spectroscopy and High-Resolution Mass Spectrometry Analysis.
Zhang, Ting; Ma, Hua; Hong, Zhicheng; Fu, Guoqing; Zheng, Yun; Li, Zhe; Cui, Fuyi.
Afiliación
  • Zhang T; Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, No.174 Shazhengjie, Shapingba, Chongqing 400044, China.
  • Ma H; Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, No.174 Shazhengjie, Shapingba, Chongqing 400044, China.
  • Hong Z; Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, No.174 Shazhengjie, Shapingba, Chongqing 400044, China.
  • Fu G; Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, No.174 Shazhengjie, Shapingba, Chongqing 400044, China.
  • Zheng Y; Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, No.174 Shazhengjie, Shapingba, Chongqing 400044, China.
  • Li Z; Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, No.174 Shazhengjie, Shapingba, Chongqing 400044, China.
  • Cui F; Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, No.174 Shazhengjie, Shapingba, Chongqing 400044, China.
Environ Sci Technol ; 56(18): 13439-13448, 2022 09 20.
Article en En | MEDLINE | ID: mdl-36069735
ABSTRACT
The rapid proliferation of planktonic algae induced by eutrophication and climate warming make algae dissolved organic matter (AOM) an important source of dissolved organic matter (DOM) in surface waters, but the understanding of the link between AOM composition and photo-reactivity/photo-transformation of DOM in aquatic systems is limited. Here, intracellular organic matter (IOM) from Microcystis aeruginosa was extracted and subjected to molecular weight (MW) fractionation. Results indicated that IOM had lower aromaticity and higher photosensitive activity compared to Suwannee River fulvic acid (SRFA). The photosensitive activity of IOM relied on both its molecular weight distribution and fluorescence components. The IOM fraction with the highest MW proteins had the lowest quantum yields of reactive intermediates (ΦRIs), which increased with the decrease of MW, while the fractions with more low-excitation tyrosine-like components had relatively higher ΦRIs. Parallel factor analysis and high-resolution mass spectrometry revealed that light radiation of IOM resulted in the composition transformation from tryptophan-like and tyrosine-like components to humic-like components, forming less aromatic and more saturated recalcitrant dissolved organic carbon. Our findings provide new insights into the photo-reactivity and photo-transformation of algae-derived organic matters and help to predict DOM formation involved in carbon cycling in water environment.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Triptófano / Materia Orgánica Disuelta Tipo de estudio: Prognostic_studies Idioma: En Revista: Environ Sci Technol Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Triptófano / Materia Orgánica Disuelta Tipo de estudio: Prognostic_studies Idioma: En Revista: Environ Sci Technol Año: 2022 Tipo del documento: Article País de afiliación: China
...