Your browser doesn't support javascript.
loading
Wood-Based Self-Supporting Nanoporous Three-Dimensional Electrode for High-Efficiency Battery Deionization.
Wei, Wenfei; Gu, Xiaosong; Wang, Ranhao; Feng, Xiaonan; Chen, Hong.
Afiliación
  • Wei W; Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Eng
  • Gu X; Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Eng
  • Wang R; Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Eng
  • Feng X; Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Eng
  • Chen H; Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Eng
Nano Lett ; 22(18): 7572-7578, 2022 09 28.
Article en En | MEDLINE | ID: mdl-36083029
ABSTRACT
Developing highly efficient advanced battery deionization (BDI) electrode materials at a low cost is vital for seawater desalination. Herein, a high-efficiency wood-based BDI electrode has been fabricated for seawater desalination, benefiting from the self-supporting three-dimensional (3D) nanoporous structure and rich redox-active sites. The finely tuned rich electrochemical redox active C═O groups on the surface of the wood electrode derived from the facile thermochemical conversion of lignin play a crucial role in the Faradaic cation removal dynamics of BDI. Coupling the 3D wood electrode and a polyaniline-modified wood electrode as the cathode and anode, an all-wood-electrode-based deionization battery has been successfully assembled with a state-of-the-art ion removal capacity of up to 164 mg g-1 in seawater. Our work reported an example of utilizing wood as the BDI electrode via fine-tuning the redox-active sites, demonstrating a novel resource utilization pathway of converting cheap biomass into BDI electrodes for highly efficient seawater desalination.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Purificación del Agua / Nanoporos Idioma: En Revista: Nano Lett Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Purificación del Agua / Nanoporos Idioma: En Revista: Nano Lett Año: 2022 Tipo del documento: Article
...