Your browser doesn't support javascript.
loading
Predictive Power for Thrombus Detection after Atrial Appendage Closure: Machine Learning vs. Classical Methods.
Antúnez-Muiños, Pablo; Vicente-Palacios, Víctor; Pérez-Sánchez, Pablo; Sampedro-Gómez, Jesús; Sánchez-Puente, Antonio; Dorado-Díaz, Pedro Ignacio; Nombela-Franco, Luis; Salinas, Pablo; Gutiérrez-García, Hipólito; Amat-Santos, Ignacio; Peral, Vicente; Morcuende, Antonio; Asmarats, Lluis; Freixa, Xavier; Regueiro, Ander; Caneiro-Queija, Berenice; Estevez-Loureiro, Rodrigo; Rodés-Cabau, Josep; Sánchez, Pedro Luis; Cruz-González, Ignacio.
Afiliación
  • Antúnez-Muiños P; CIBERCV, University Hospital of Salamanca, 37007 Salamanca, Spain.
  • Vicente-Palacios V; Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain.
  • Pérez-Sánchez P; Philips Ibérica, 28050 Madrid, Spain.
  • Sampedro-Gómez J; CIBERCV, University Hospital of Salamanca, 37007 Salamanca, Spain.
  • Sánchez-Puente A; Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain.
  • Dorado-Díaz PI; CIBERCV, University Hospital of Salamanca, 37007 Salamanca, Spain.
  • Nombela-Franco L; CIBERCV, University Hospital of Salamanca, 37007 Salamanca, Spain.
  • Salinas P; CIBERCV, University Hospital of Salamanca, 37007 Salamanca, Spain.
  • Gutiérrez-García H; Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain.
  • Amat-Santos I; Instituto Cardiovascular, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain.
  • Peral V; Instituto Cardiovascular, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain.
  • Morcuende A; CIBERCV, Instituto de Ciencias del Corazón (ICICOR), Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain.
  • Asmarats L; CIBERCV, Instituto de Ciencias del Corazón (ICICOR), Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain.
  • Freixa X; Department of Cardiology, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma, Spain.
  • Regueiro A; Department of Cardiology, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma, Spain.
  • Caneiro-Queija B; Quebec Heart and Kung Institute, Laval University, Quebec City, QC G1V 0A6, Canada.
  • Estevez-Loureiro R; Institut Clínic Cardiovascular, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain.
  • Rodés-Cabau J; Institut Clínic Cardiovascular, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain.
  • Sánchez PL; University Hospital Alvaro Cunqueiro, 36312 Vigo, Spain.
  • Cruz-González I; University Hospital Alvaro Cunqueiro, 36312 Vigo, Spain.
J Pers Med ; 12(9)2022 Aug 30.
Article en En | MEDLINE | ID: mdl-36143197
Device-related thrombus (DRT) after left atrial appendage (LAA) closure is infrequent but correlates with an increased risk of thromboembolism. Therefore, the search for DRT predictors is a topic of interest. In the literature, multivariable methods have been used achieving non-consistent results, and to the best of our knowledge, machine learning techniques have not been used yet for thrombus detection after LAA occlusion. Our aim is to compare both methodologies with respect to predictive power and the search for predictors of DRT. To this end, a multicenter study including 1150 patients who underwent LAA closure was analyzed. Two lines of experiments were performed: with and without resampling. Multivariate and machine learning methodologies were applied to both lines. Predictive power and the extracted predictors for all experiments were gathered. ROC curves of 0.5446 and 0.7974 were obtained for multivariate analysis and machine learning without resampling, respectively. However, the resampling experiment showed no significant difference between them (0.52 vs. 0.53 ROC AUC). A difference between the predictors selected was observed, with the multivariable methodology being more stable. These results question the validity of predictors reported in previous studies and demonstrate their disparity. Furthermore, none of the techniques analyzed is superior to the other for these data.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Clinical_trials / Diagnostic_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Pers Med Año: 2022 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Clinical_trials / Diagnostic_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Pers Med Año: 2022 Tipo del documento: Article País de afiliación: España
...