Risk stratification and pathway analysis based on graph neural network and interpretable algorithm.
BMC Bioinformatics
; 23(1): 394, 2022 Sep 27.
Article
en En
| MEDLINE
| ID: mdl-36167504
BACKGROUND: Pathway-based analysis of transcriptomic data has shown greater stability and better performance than traditional gene-based analysis. Until now, some pathway-based deep learning models have been developed for bioinformatic analysis, but these models have not fully considered the topological features of pathways, which limits the performance of the final prediction result. RESULTS: To address this issue, we propose a novel model, called PathGNN, which constructs a Graph Neural Networks (GNNs) model that can capture topological features of pathways. As a case, PathGNN was applied to predict long-term survival of four types of cancer and achieved promising predictive performance when compared to other common methods. Furthermore, the adoption of an interpretation algorithm enabled the identification of plausible pathways associated with survival. CONCLUSION: PathGNN demonstrates that GNN can be effectively applied to build a pathway-based model, resulting in promising predictive power.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Redes Neurales de la Computación
/
Neoplasias
Tipo de estudio:
Etiology_studies
/
Prognostic_studies
/
Risk_factors_studies
Límite:
Humans
Idioma:
En
Revista:
BMC Bioinformatics
Asunto de la revista:
INFORMATICA MEDICA
Año:
2022
Tipo del documento:
Article
País de afiliación:
China