Your browser doesn't support javascript.
loading
Risk stratification and pathway analysis based on graph neural network and interpretable algorithm.
Liang, Bilin; Gong, Haifan; Lu, Lu; Xu, Jie.
Afiliación
  • Liang B; Shanghai Artificial Intelligence Laboratory, Yunjing Road 701, Shanghai, China.
  • Gong H; Shanghai Artificial Intelligence Laboratory, Yunjing Road 701, Shanghai, China.
  • Lu L; Shanghai Artificial Intelligence Laboratory, Yunjing Road 701, Shanghai, China.
  • Xu J; Shanghai Artificial Intelligence Laboratory, Yunjing Road 701, Shanghai, China. xujie@pjlab.org.cn.
BMC Bioinformatics ; 23(1): 394, 2022 Sep 27.
Article en En | MEDLINE | ID: mdl-36167504
BACKGROUND: Pathway-based analysis of transcriptomic data has shown greater stability and better performance than traditional gene-based analysis. Until now, some pathway-based deep learning models have been developed for bioinformatic analysis, but these models have not fully considered the topological features of pathways, which limits the performance of the final prediction result. RESULTS: To address this issue, we propose a novel model, called PathGNN, which constructs a Graph Neural Networks (GNNs) model that can capture topological features of pathways. As a case, PathGNN was applied to predict long-term survival of four types of cancer and achieved promising predictive performance when compared to other common methods. Furthermore, the adoption of an interpretation algorithm enabled the identification of plausible pathways associated with survival. CONCLUSION: PathGNN demonstrates that GNN can be effectively applied to build a pathway-based model, resulting in promising predictive power.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Redes Neurales de la Computación / Neoplasias Tipo de estudio: Etiology_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Redes Neurales de la Computación / Neoplasias Tipo de estudio: Etiology_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2022 Tipo del documento: Article País de afiliación: China
...