Your browser doesn't support javascript.
loading
A flexible modeling approach for biomarker-based computation of absolute risk of Alzheimer's disease dementia.
Hartz, Sarah M; Mozersky, Jessica; Schindler, Suzanne E; Linnenbringer, Erin; Wang, Junwei; Gordon, Brian A; Raji, Cyrus A; Moulder, Krista L; West, Tim; Benzinger, Tammie L S; Cruchaga, Carlos; Hassenstab, Jason J; Bierut, Laura J; Xiong, Chengjie; Morris, John C.
Afiliación
  • Hartz SM; Washington University School of Medicine, St. Louis, Missouri, USA.
  • Mozersky J; Washington University School of Medicine, St. Louis, Missouri, USA.
  • Schindler SE; Washington University School of Medicine, St. Louis, Missouri, USA.
  • Linnenbringer E; Washington University School of Medicine, St. Louis, Missouri, USA.
  • Wang J; Washington University School of Medicine, St. Louis, Missouri, USA.
  • Gordon BA; Washington University School of Medicine, St. Louis, Missouri, USA.
  • Raji CA; Washington University School of Medicine, St. Louis, Missouri, USA.
  • Moulder KL; Washington University School of Medicine, St. Louis, Missouri, USA.
  • West T; C2N Diagnostics, St. Louis, Missouri, USA.
  • Benzinger TLS; Washington University School of Medicine, St. Louis, Missouri, USA.
  • Cruchaga C; Washington University School of Medicine, St. Louis, Missouri, USA.
  • Hassenstab JJ; Washington University School of Medicine, St. Louis, Missouri, USA.
  • Bierut LJ; Washington University School of Medicine, St. Louis, Missouri, USA.
  • Xiong C; Washington University School of Medicine, St. Louis, Missouri, USA.
  • Morris JC; Washington University School of Medicine, St. Louis, Missouri, USA.
Alzheimers Dement ; 19(4): 1452-1465, 2023 04.
Article en En | MEDLINE | ID: mdl-36178120
INTRODUCTION: As Alzheimer's disease (AD) biomarkers rapidly develop, tools are needed that accurately and effectively communicate risk of AD dementia. METHODS: We analyzed longitudinal data from >10,000 cognitively unimpaired older adults. Five-year risk of AD dementia was modeled using survival analysis. RESULTS: A demographic model was developed and validated on independent data with area under the receiver operating characteristic curve (AUC) for 5-year prediction of AD dementia of 0.79. Clinical and cognitive variables (AUC = 0.79), and apolipoprotein E genotype (AUC = 0.76) were added to the demographic model. We then incorporated the risk computed from the demographic model with hazard ratios computed from independent data for amyloid positron emission tomography status and magnetic resonance imaging hippocampal volume (AUC = 0.84), and for plasma amyloid beta (Aß)42/Aß40 (AUC = 0.82). DISCUSSION: An adaptive tool was developed and validated to compute absolute risks of AD dementia. This approach allows for improved accuracy and communication of AD risk among cognitively unimpaired older adults.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Enfermedad de Alzheimer / Disfunción Cognitiva Tipo de estudio: Etiology_studies / Prognostic_studies / Risk_factors_studies Límite: Aged / Humans Idioma: En Revista: Alzheimers Dement Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Enfermedad de Alzheimer / Disfunción Cognitiva Tipo de estudio: Etiology_studies / Prognostic_studies / Risk_factors_studies Límite: Aged / Humans Idioma: En Revista: Alzheimers Dement Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos
...