Your browser doesn't support javascript.
loading
A high-Q superconducting toroidal medium frequency detection system with a capacitively adjustable frequency range >180 kHz.
Völksen, F; Devlin, J A; Borchert, M J; Erlewein, S R; Fleck, M; Jäger, J I; Latacz, B M; Micke, P; Nuschke, P; Umbrazunas, G; Wursten, E J; Abbass, F; Bohman, M A; Popper, D; Wiesinger, M; Will, C; Blaum, K; Matsuda, Y; Mooser, A; Ospelkaus, C; Smorra, C; Soter, A; Quint, W; Walz, J; Yamazaki, Y; Ulmer, S.
Afiliación
  • Völksen F; RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
  • Devlin JA; RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
  • Borchert MJ; RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
  • Erlewein SR; RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
  • Fleck M; RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
  • Jäger JI; RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
  • Latacz BM; RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
  • Micke P; RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
  • Nuschke P; RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
  • Umbrazunas G; RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
  • Wursten EJ; RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
  • Abbass F; Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz, Germany.
  • Bohman MA; RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
  • Popper D; Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz, Germany.
  • Wiesinger M; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany.
  • Will C; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany.
  • Blaum K; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany.
  • Matsuda Y; Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-0041, Japan.
  • Mooser A; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany.
  • Ospelkaus C; Institut für Quantenoptik, Leibniz Universität, Welfengarten 1, D-30167 Hannover, Germany.
  • Smorra C; RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
  • Soter A; Eidgenössisch Technische Hochschule Zürich, Rämistrasse 101, 8092 Zürich, Switzerland.
  • Quint W; GSI-Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291 Darmstadt, Germany.
  • Walz J; Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz, Germany.
  • Yamazaki Y; RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
  • Ulmer S; RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
Rev Sci Instrum ; 93(9): 093303, 2022 Sep 01.
Article en En | MEDLINE | ID: mdl-36182508
We describe a newly developed polytetrafluoroethylene/copper capacitor driven by a cryogenic piezoelectric slip-stick stage and demonstrate with the chosen layout cryogenic capacitance tuning of ≈60 pF at ≈10 pF background capacitance. Connected to a highly sensitive superconducting toroidal LC circuit, we demonstrate tuning of the resonant frequency between 345 and 685 kHz, at quality factors Q > 100 000. Connected to a cryogenic ultra low noise amplifier, a frequency tuning range between 520 and 710 kHz is reached, while quality factors Q > 86 000 are achieved. This new device can be used as a versatile image current detector in high-precision Penning-trap experiments or as an LC-circuit-based haloscope detector to search for the conversion of axion-like dark matter to radio-frequency photons. This new development increases the sensitive detection bandwidth of our axion haloscope by a factor of ≈1000.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Revista: Rev Sci Instrum Año: 2022 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Revista: Rev Sci Instrum Año: 2022 Tipo del documento: Article País de afiliación: Japón
...