Your browser doesn't support javascript.
loading
Structure of the TnsB transposase-DNA complex of type V-K CRISPR-associated transposon.
Tenjo-Castaño, Francisco; Sofos, Nicholas; López-Méndez, Blanca; Stutzke, Luisa S; Fuglsang, Anders; Stella, Stefano; Montoya, Guillermo.
Afiliación
  • Tenjo-Castaño F; Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, 2200, Copenhagen, Denmark.
  • Sofos N; Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, 2200, Copenhagen, Denmark.
  • López-Méndez B; Protein Purification and Characterisation Facility, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, 2200, Copenhagen, Denmark.
  • Stutzke LS; Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, 2200, Copenhagen, Denmark.
  • Fuglsang A; Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, 2200, Copenhagen, Denmark.
  • Stella S; Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, 2200, Copenhagen, Denmark.
  • Montoya G; Twelve Bio ApS, Ole Maaløes Vej 3, 2200, Copenhagen, Denmark.
Nat Commun ; 13(1): 5792, 2022 10 02.
Article en En | MEDLINE | ID: mdl-36184667
ABSTRACT
CRISPR-associated transposons (CASTs) are mobile genetic elements that co-opted CRISPR-Cas systems for RNA-guided transposition. Here we present the 2.4 Å cryo-EM structure of the Scytonema hofmannii (sh) TnsB transposase from Type V-K CAST, bound to the strand transfer DNA. The strand transfer complex displays an intertwined pseudo-symmetrical architecture. Two protomers involved in strand transfer display a catalytically competent active site composed by DDE residues, while other two, which play a key structural role, show active sites where the catalytic residues are not properly positioned for phosphodiester hydrolysis. Transposon end recognition is accomplished by the NTD1/2 helical domains. A singular in trans association of NTD1 domains of the catalytically competent subunits with the inactive DDE domains reinforces the assembly. Collectively, the structural features suggest that catalysis is coupled to protein-DNA assembly to secure proper DNA integration. DNA binding residue mutants reveal that lack of specificity decreases activity, but it could increase transposition in some cases. Our structure sheds light on the strand transfer reaction of DDE transposases and offers new insights into CAST transposition.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Transposasas / Diclorodifenil Dicloroetileno Tipo de estudio: Risk_factors_studies Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2022 Tipo del documento: Article País de afiliación: Dinamarca

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Transposasas / Diclorodifenil Dicloroetileno Tipo de estudio: Risk_factors_studies Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2022 Tipo del documento: Article País de afiliación: Dinamarca
...