Your browser doesn't support javascript.
loading
Raman spectroscopy and FTIR spectroscopy fusion technology combined with deep learning: A novel cancer prediction method.
Leng, Hongyong; Chen, Cheng; Chen, Chen; Chen, Fangfang; Du, Zijun; Chen, Jiajia; Yang, Bo; Zuo, Enguang; Xiao, Meng; Lv, Xiaoyi; Liu, Pei.
Afiliación
  • Leng H; School of Computer Science & Technology, Beijing Institute of Technology, Beijing 100081, China; College of Software, Xinjiang University, Urumqi 830046, Xinjiang, China.
  • Chen C; College of Software, Xinjiang University, Urumqi 830046, Xinjiang, China; Key Laboratory of Signal Detection and Processing, Xinjiang University, Urumqi 830046, China; Xinjiang Cloud Computing Application Laboratory, Xinjiang Cloud Computing Engineering Technology Research Center, Karamay 834000, Ch
  • Chen C; College of Software, Xinjiang University, Urumqi 830046, Xinjiang, China; Key Laboratory of Signal Detection and Processing, Xinjiang University, Urumqi 830046, China; Xinjiang Cloud Computing Application Laboratory, Xinjiang Cloud Computing Engineering Technology Research Center, Karamay 834000, Ch
  • Chen F; Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou 511483, Guangdong, China.
  • Du Z; University of Macau, Macao Special Administrative Region, 999078, China.
  • Chen J; Changji Vocational and Technical College, Changji 831100, China.
  • Yang B; The Fourth Affiliated Hospital of Wulumqi, Urumqi 830046, China.
  • Zuo E; College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China.
  • Xiao M; College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China.
  • Lv X; College of Software, Xinjiang University, Urumqi 830046, Xinjiang, China; College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China.
  • Liu P; College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121839, 2023 Jan 15.
Article en En | MEDLINE | ID: mdl-36191438
According to the limited molecular information reflected by single spectroscopy, and the complementarity of FTIR spectroscopy and Raman spectroscopy, we propose a novel diagnostic technology combining multispectral fusion and deep learning. We used serum samples from 45 healthy controls, 44 non-small cell lung cancer (NSCLC), 38 glioma and 37 esophageal cancer patients, and the Raman spectra and FTIR spectra were collected respectively. Then we performed low-level fusion and feature fusion on the spectral, and used SVM, Convolutional Neural Network-Long-Short Term Memory (CNN-LSTM) and the multi-scale convolutional fusion neural network (MFCNN). The accuracy of low-level fusion and feature fusion models are improved by about 10% compared with single spectral models.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Carcinoma de Pulmón de Células no Pequeñas / Aprendizaje Profundo / Neoplasias Pulmonares Límite: Humans Idioma: En Revista: Spectrochim Acta A Mol Biomol Spectrosc Asunto de la revista: BIOLOGIA MOLECULAR Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Carcinoma de Pulmón de Células no Pequeñas / Aprendizaje Profundo / Neoplasias Pulmonares Límite: Humans Idioma: En Revista: Spectrochim Acta A Mol Biomol Spectrosc Asunto de la revista: BIOLOGIA MOLECULAR Año: 2023 Tipo del documento: Article País de afiliación: China
...