Your browser doesn't support javascript.
loading
Low-Energy Hydrogen Ions Enable Efficient Room-Temperature and Rapid Plasma Hydrogenation of TiO2 Nanorods for Enhanced Photoelectrochemical Activity.
Wang, Xiaodan; Mayrhofer, Leonhard; Keunecke, Martin; Estrade, Sonia; Lopez-Conesa, Lluis; Moseler, Michael; Waag, Andreas; Schaefer, Lothar; Shi, Weidong; Meng, Xiangjian; Chu, Junhao; Fan, Zhiyong; Shen, Hao.
Afiliación
  • Wang X; Fraunhofer Institute for Surface Engineering and Thin Films, Bienroder Weg 54E, 38108, Braunschweig, Germany.
  • Mayrhofer L; Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstraße 11, 79108, Freiburg, Germany.
  • Keunecke M; Fraunhofer Institute for Surface Engineering and Thin Films, Bienroder Weg 54E, 38108, Braunschweig, Germany.
  • Estrade S; Department d'Electrònica, Universitat de Barcelona, c/Martí Franquès 1, Barcelona, 08028, Spain.
  • Lopez-Conesa L; Department d'Electrònica, Universitat de Barcelona, c/Martí Franquès 1, Barcelona, 08028, Spain.
  • Moseler M; Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstraße 11, 79108, Freiburg, Germany.
  • Waag A; Institute for Semiconductor Technology, TU Braunschweig, Hans-Sommer-Strasse 66, 38106, Braunschweig, Germany.
  • Schaefer L; Fraunhofer Institute for Surface Engineering and Thin Films, Bienroder Weg 54E, 38108, Braunschweig, Germany.
  • Shi W; School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, China.
  • Meng X; Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Yu Tian Road 500, Shanghai, 200083, China.
  • Chu J; Institute of Optoelectronics, Fudan University, Song Hu Road 2005, Shanghai, 200438, China.
  • Fan Z; Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China.
  • Shen H; Fraunhofer Institute for Surface Engineering and Thin Films, Bienroder Weg 54E, 38108, Braunschweig, Germany.
Small ; 18(46): e2204136, 2022 Nov.
Article en En | MEDLINE | ID: mdl-36192163
Hydrogenation is a promising technique to prepare black TiO2 (H-TiO2 ) for solar water splitting, however, there remain limitations such as severe preparation conditions and underexplored hydrogenation mechanisms to inefficient hydrogenation and poor photoelectrochemical (PEC) performance to be overcome for practical applications. Here, a room-temperature and rapid plasma hydrogenation (RRPH) strategy that realizes low-energy hydrogen ions of below 250 eV to fabricate H-TiO2 nanorods with controllable disordered shell, outperforming incumbent hydrogenations, is reported. The mechanisms of efficient RRPH and enhanced PEC activity are experimentally and theoretically unraveled. It is discovered that low-energy hydrogen ions with fast subsurface transport kinetics and shallow penetration depth features, enable them to directly penetrate TiO2 via unique multiple penetration pathways to form controllable disordered shell and suppress bulk defects, ultimately leading to improved PEC performance. Furthermore, the hydrogenation-property experiments reveal that the enhanced PEC activity is mainly ascribed to increasing band bending and bulk defect suppression, compared to reported H-TiO2 , a superior photocurrent density of 2.55 mA cm-2 at 1.23 VRHE is achieved. These findings demonstrate a sustainable strategy which offers great promise of TiO2 and other oxides to achieve further-improved material properties for broad practical applications.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: Alemania
...