Your browser doesn't support javascript.
loading
Optimization Reduces Knee-Joint Forces During Walking and Squatting: Validating the Inverse Dynamics Approach for Full Body Movements on Instrumented Knee Prostheses.
Wagner, Heiko; Boström, Kim Joris; de Lussanet, Marc H E; de Graaf, Myriam L; Puta, Christian; Mochizuki, Luis.
Afiliación
  • Wagner H; Movement Science, University of Münster, Münster,Germany.
  • Boström KJ; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster,Germany.
  • de Lussanet MHE; Center for Interdisciplinary Prevention of Diseases related to Professional Activities, Friedrich-Schiller-Universität, Jena,Germany.
  • de Graaf ML; Movement Science, University of Münster, Münster,Germany.
  • Puta C; Movement Science, University of Münster, Münster,Germany.
  • Mochizuki L; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster,Germany.
Motor Control ; 27(2): 161-178, 2023 Apr 01.
Article en En | MEDLINE | ID: mdl-36252948
ABSTRACT
Because of the redundancy of our motor system, movements can be performed in many ways. While multiple motor control strategies can all lead to the desired behavior, they result in different joint and muscle forces. This creates opportunities to explore this redundancy, for example, for pain avoidance or reducing the risk of further injury. To assess the effect of different motor control optimization strategies, a direct measurement of muscle and joint forces is desirable, but problematic for medical and ethical reasons. Computational modeling might provide a solution by calculating approximations of these forces. In this study, we used a full-body computational musculoskeletal model to (a) predict forces measured in knee prostheses during walking and squatting and (b) study the effect of different motor control strategies (i.e., minimizing joint force vs. muscle activation) on the joint load and prediction error. We found that musculoskeletal models can accurately predict knee joint forces with a root mean squared error of <0.5 body weight (BW) in the superior direction and about 0.1 BW in the medial and anterior directions. Generally, minimization of joint forces produced the best predictions. Furthermore, minimizing muscle activation resulted in maximum knee forces of about 4 BW for walking and 2.5 BW for squatting. Minimizing joint forces resulted in maximum knee forces of 2.25 BW and 2.12 BW, that is, a reduction of 44% and 15%, respectively. Thus, changing the muscular coordination strategy can strongly affect knee joint forces. Patients with a knee prosthesis may adapt their neuromuscular activation to reduce joint forces during locomotion.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Prótesis de la Rodilla Tipo de estudio: Prognostic_studies Aspecto: Ethics Límite: Humans Idioma: En Revista: Motor Control Asunto de la revista: NEUROLOGIA / PSICOFISIOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Prótesis de la Rodilla Tipo de estudio: Prognostic_studies Aspecto: Ethics Límite: Humans Idioma: En Revista: Motor Control Asunto de la revista: NEUROLOGIA / PSICOFISIOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Alemania
...