Your browser doesn't support javascript.
loading
Probing growth of metal-organic frameworks with X-ray scattering and vibrational spectroscopy.
Lu, Wenchao; Zhang, Emily; Qian, Jin; Weeraratna, Chaya; Jackson, Megan N; Zhu, Chenhui; Long, Jeffrey R; Ahmed, Musahid.
Afiliación
  • Lu W; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. mahmed@lbl.gov.
  • Zhang E; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. mahmed@lbl.gov.
  • Qian J; Department of Chemistry, University of California, Berkeley, CA 94720, USA.
  • Weeraratna C; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. mahmed@lbl.gov.
  • Jackson MN; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. mahmed@lbl.gov.
  • Zhu C; Department of Chemistry, University of California, Berkeley, CA 94720, USA.
  • Long JR; Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
  • Ahmed M; Department of Chemistry, University of California, Berkeley, CA 94720, USA.
Phys Chem Chem Phys ; 24(42): 26102-26110, 2022 Nov 02.
Article en En | MEDLINE | ID: mdl-36274571
Nucleation and crystallization arising from liquid to solid phase are involved in a multitude of processes in fields ranging from materials science to biology. Controlling the thermodynamics and kinetics of growth is advantageous to help tune the formation of complex morphologies. Here, we harness wide-angle X-ray scattering and vibrational spectroscopy to elucidate the mechanism for crystallization and growth of the metal-organic framework Co-MOF-74 within microscopic volumes enclosed in a capillary and an attenuated total reflection microchip reactor. The experiments reveal molecular and structural details of the growth processes, while the results of plane wave density functional calculations allow identification of lattice and linker modes in the formed crystals. Synthesis of the metal-organic framework with microscopic volumes leads to monodisperse and micron-sized crystals, in contrast to those typically observed under bulk reaction conditions. Reduction in the volume of reagents within the microchip reactor was found to accelerate the reaction rate. The coupling of spectroscopy with scattering to probe reactions in microscopic volumes promises to be a useful tool in the synthetic chemist's kit to understand chemical bonding and has potential in designing complex materials.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Estructuras Metalorgánicas Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Estructuras Metalorgánicas Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos
...