Your browser doesn't support javascript.
loading
Deep Learning Multi-Domain Model Provides Accurate Detection and Grading of Mucosal Ulcers in Different Capsule Endoscopy Types.
Kratter, Tom; Shapira, Noam; Lev, Yarden; Mauda, Or; Moshkovitz, Yehonatan; Shitrit, Roni; Konyo, Shani; Ukashi, Offir; Dar, Lior; Shlomi, Oranit; Albshesh, Ahmad; Soffer, Shelly; Klang, Eyal; Ben Horin, Shomron; Eliakim, Rami; Kopylov, Uri; Margalit Yehuda, Reuma.
Afiliación
  • Kratter T; Penta-AI, Tel Aviv 6701101, Israel.
  • Shapira N; Penta-AI, Tel Aviv 6701101, Israel.
  • Lev Y; Penta-AI, Tel Aviv 6701101, Israel.
  • Mauda O; Penta-AI, Tel Aviv 6701101, Israel.
  • Moshkovitz Y; Penta-AI, Tel Aviv 6701101, Israel.
  • Shitrit R; Faculty of Medicine, Ben-Gurion University of the Negev, Be'er Sheva 8410501, Israel.
  • Konyo S; Department of Internal Medicine E, Sheba Medical Center, Tel Hashomer, Ramat Gan 5262100, Israel.
  • Ukashi O; Sackler School of Medicine, Tel Aviv University, P.O.B 39040, Tel Aviv 6997801, Israel.
  • Dar L; Sackler School of Medicine, Tel Aviv University, P.O.B 39040, Tel Aviv 6997801, Israel.
  • Shlomi O; Department of Gastroenterology, Sheba Medical Center, Tel Hashomer, Ramat Gan 5262100, Israel.
  • Albshesh A; Sackler School of Medicine, Tel Aviv University, P.O.B 39040, Tel Aviv 6997801, Israel.
  • Soffer S; Department of Gastroenterology, Sheba Medical Center, Tel Hashomer, Ramat Gan 5262100, Israel.
  • Klang E; Sackler School of Medicine, Tel Aviv University, P.O.B 39040, Tel Aviv 6997801, Israel.
  • Ben Horin S; Department of Internal Medicine F, Sheba Medical Center, Tel Hashomer, Ramat Gan 5262100, Israel.
  • Eliakim R; Sackler School of Medicine, Tel Aviv University, P.O.B 39040, Tel Aviv 6997801, Israel.
  • Kopylov U; Department of Gastroenterology, Sheba Medical Center, Tel Hashomer, Ramat Gan 5262100, Israel.
  • Margalit Yehuda R; Internal Medicine B, Assuta Medical Center, Ashdod, Israel, Ben-Gurion University of the Negev, Be'er Sheva 8410501, Israel.
Diagnostics (Basel) ; 12(10)2022 Oct 14.
Article en En | MEDLINE | ID: mdl-36292178
BACKGROUND AND AIMS: The aim of our study was to create an accurate patient-level combined algorithm for the identification of ulcers on CE images from two different capsules. METHODS: We retrospectively collected CE images from PillCam-SB3's capsule and PillCam-Crohn's capsule. ML algorithms were trained to classify small bowel CE images into either normal or ulcerated mucosa: a separate model for each capsule type, a cross-domain model (training the model on one capsule type and testing on the other), and a combined model. RESULTS: The dataset included 33,100 CE images: 20,621 PillCam-SB3 images and 12,479 PillCam-Crohn's images, of which 3582 were colonic images. There were 15,684 normal mucosa images and 17,416 ulcerated mucosa images. While the separate model for each capsule type achieved excellent accuracy (average AUC 0.95 and 0.98, respectively), the cross-domain model achieved a wide range of accuracies (0.569-0.88) with an AUC of 0.93. The combined model achieved the best results with an average AUC of 0.99 and average mean patient accuracy of 0.974. CONCLUSIONS: A combined model for two different capsules provided high and consistent diagnostic accuracy. Creating a holistic AI model for automated capsule reading is an essential part of the refinement required in ML models on the way to adapting them to clinical practice.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Revista: Diagnostics (Basel) Año: 2022 Tipo del documento: Article País de afiliación: Israel

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Revista: Diagnostics (Basel) Año: 2022 Tipo del documento: Article País de afiliación: Israel
...