Your browser doesn't support javascript.
loading
De novo analysis of bulk RNA-seq data at spatially resolved single-cell resolution.
Liao, Jie; Qian, Jingyang; Fang, Yin; Chen, Zhuo; Zhuang, Xiang; Zhang, Ningyu; Shao, Xin; Hu, Yining; Yang, Penghui; Cheng, Junyun; Hu, Yang; Yu, Lingqi; Yang, Haihong; Zhang, Jinlu; Lu, Xiaoyan; Shao, Li; Wu, Dan; Gao, Yue; Chen, Huajun; Fan, Xiaohui.
Afiliación
  • Liao J; College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
  • Qian J; Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, 314100, Jiaxing, China.
  • Fang Y; College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
  • Chen Z; College of Computer Science and Technology, Zhejiang University, 310027, Hangzhou, China.
  • Zhuang X; Hangzhou Innovation Center, Zhejiang University, 310058, Hangzhou, China.
  • Zhang N; College of Computer Science and Technology, Zhejiang University, 310027, Hangzhou, China.
  • Shao X; Hangzhou Innovation Center, Zhejiang University, 310058, Hangzhou, China.
  • Hu Y; College of Computer Science and Technology, Zhejiang University, 310027, Hangzhou, China.
  • Yang P; Hangzhou Innovation Center, Zhejiang University, 310058, Hangzhou, China.
  • Cheng J; College of Computer Science and Technology, Zhejiang University, 310027, Hangzhou, China.
  • Hu Y; Hangzhou Innovation Center, Zhejiang University, 310058, Hangzhou, China.
  • Yu L; College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
  • Yang H; Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, 314100, Jiaxing, China.
  • Zhang J; College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
  • Lu X; College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
  • Shao L; College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
  • Wu D; Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, 310058, Hangzhou, China.
  • Gao Y; College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
  • Chen H; Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, 310058, Hangzhou, China.
  • Fan X; College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
Nat Commun ; 13(1): 6498, 2022 10 30.
Article en En | MEDLINE | ID: mdl-36310179
Uncovering the tissue molecular architecture at single-cell resolution could help better understand organisms' biological and pathological processes. However, bulk RNA-seq can only measure gene expression in cell mixtures, without revealing the transcriptional heterogeneity and spatial patterns of single cells. Herein, we introduce Bulk2Space ( https://github.com/ZJUFanLab/bulk2space ), a deep learning framework-based spatial deconvolution algorithm that can simultaneously disclose the spatial and cellular heterogeneity of bulk RNA-seq data using existing single-cell and spatial transcriptomics references. The use of bulk transcriptomics to validate Bulk2Space unveils, in particular, the spatial variance of immune cells in different tumor regions, the molecular and spatial heterogeneity of tissues during inflammation-induced tumorigenesis, and spatial patterns of novel genes in different cell types. Moreover, Bulk2Space is utilized to perform spatial deconvolution analysis on bulk transcriptome data from two different mouse brain regions derived from our in-house developed sequencing approach termed Spatial-seq. We have not only reconstructed the hierarchical structure of the mouse isocortex but also further annotated cell types that were not identified by original methods in the mouse hypothalamus.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Transcriptoma / Neoplasias Límite: Animals Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Transcriptoma / Neoplasias Límite: Animals Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2022 Tipo del documento: Article País de afiliación: China
...